Conjugation of Natural Triterpenic Acids with Delocalized Lipophilic Cations: Selective Targeting Cancer Cell Mitochondria.

Anna Yu Spivak, Darya A Nedopekina, Rinat R Gubaidullin, Mikhail V Dubinin, Konstantin N Belosludtsev
Author Information
  1. Anna Yu Spivak: Organic Synthesis Laboratory, Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 450075 Ufa, Russia. ORCID
  2. Darya A Nedopekina: Organic Synthesis Laboratory, Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 450075 Ufa, Russia. ORCID
  3. Rinat R Gubaidullin: Organic Synthesis Laboratory, Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 450075 Ufa, Russia.
  4. Mikhail V Dubinin: Department of Biochemistry, Cell Biology and Microbiology, Mari State University, 424001 Yoshkar-Ola, Russia. ORCID
  5. Konstantin N Belosludtsev: Department of Biochemistry, Cell Biology and Microbiology, Mari State University, 424001 Yoshkar-Ola, Russia. ORCID

Abstract

Currently, a new line of research on mitochondria-targeted anticancer drugs is actively developing in the field of biomedicine and medicinal chemistry. The distinguishing features of this universal target for anticancer agents include presence of mitochondria in the overwhelming majority, if not all types of transformed cells, crucial importance of these cytoplasmic organelles in energy production, regulation of cell death pathways, as well as generation of reactive oxygen species and maintenance of calcium homeostasis. Hence, mitochondriotropic anticancer mitocan agents, acting through mitochondrial destabilization, have good prospects in cancer therapy. Available natural pentacyclic triterpenoids are considered promising scaffolds for development of new mitochondria-targeted anticancer agents. These secondary metabolites affect the mitochondria of tumor cells and initiate formation of reactive oxygen species. The present paper focuses on the latest research outcomes of synthesis and study of cytotoxic activity of conjugates of pentacyclic triterpenoids with some mitochondria-targeted cationic lipophilic molecules and highlights the advantages of applying them as novel mitocan agents compared to their prototype natural triterpenic acids.

Keywords

References

  1. Cell Metab. 2019 Feb 5;29(2):399-416.e10 [PMID: 30449682]
  2. Eur J Med Chem. 2017 Feb 15;127:1-9 [PMID: 28033541]
  3. Cancer Metab. 2021 Apr 21;9(1):17 [PMID: 33883040]
  4. Anticancer Agents Med Chem. 2006 May;6(3):271-9 [PMID: 16712455]
  5. Eur J Med Chem. 2015 Mar 6;92:648-55 [PMID: 25617694]
  6. Chem Rev. 2017 Aug 9;117(15):10043-10120 [PMID: 28654243]
  7. Cells. 2019 Aug 30;8(9): [PMID: 31480399]
  8. BMC Cancer. 2019 Jul 5;19(1):666 [PMID: 31277602]
  9. Nat Rev Drug Discov. 2013 Dec;12(12):931-47 [PMID: 24287781]
  10. Molecules. 2020 Nov 20;25(22): [PMID: 33233650]
  11. Chem Biol Drug Des. 2016 Apr;87(4):517-36 [PMID: 26535952]
  12. Eur J Med Chem. 2020 Aug 1;199:112425 [PMID: 32422522]
  13. Indian J Exp Biol. 2013 Jul;51(7):485-91 [PMID: 23898546]
  14. Mol Aspects Med. 2010 Apr;31(2):145-70 [PMID: 20206201]
  15. Biomolecules. 2020 Jan 09;10(1): [PMID: 31936494]
  16. Biochemistry (Mosc). 2019 Jun;84(6):593-607 [PMID: 31238859]
  17. Int J Mol Sci. 2015 Jul 29;16(8):17394-421 [PMID: 26230693]
  18. Nat Rev Drug Discov. 2010 Jun;9(6):447-64 [PMID: 20467424]
  19. Expert Opin Ther Pat. 2017 Sep;27(9):1061-1072 [PMID: 28637397]
  20. Cancer Cell. 2002 Jul;2(1):29-42 [PMID: 12150823]
  21. Neurochem Res. 2017 Apr;42(4):1130-1140 [PMID: 28124213]
  22. Oncotarget. 2017 May 10;8(32):53819-53828 [PMID: 28881853]
  23. Medchemcomm. 2017 Sep 13;8(10):1934-1945 [PMID: 30108714]
  24. J Med Chem. 2017 Jul 27;60(14):6353-6363 [PMID: 28671831]
  25. Biochem Biophys Res Commun. 1984 Feb 14;118(3):717-23 [PMID: 6200108]
  26. Free Radic Biol Med. 2021 May 20;168:55-69 [PMID: 33812008]
  27. BMC Cancer. 2015 May 13;15:401 [PMID: 25967547]
  28. Antioxid Redox Signal. 2011 Dec 15;15(12):2923-35 [PMID: 21902599]
  29. Eur J Med Chem. 2012 Oct;56:237-45 [PMID: 22995818]
  30. J Biol Chem. 2011 Feb 4;286(5):3717-28 [PMID: 21059645]
  31. Mol Cancer Ther. 2016 Dec;15(12):2875-2886 [PMID: 27765848]
  32. N Engl J Med. 2012 Mar 8;366(10):883-892 [PMID: 22397650]
  33. Mol Aspects Med. 2010 Feb;31(1):1-20 [PMID: 19698742]
  34. Antioxid Redox Signal. 2017 Jan 10;26(2):84-103 [PMID: 27392540]
  35. Cell. 2015 Jul 30;162(3):540-51 [PMID: 26232224]
  36. Biochemistry (Mosc). 2005 Feb;70(2):222-30 [PMID: 15807662]
  37. Cancer Invest. 2014 Jul;32(6):241-7 [PMID: 24762082]
  38. Cancer Res. 1996 Feb 1;56(3):538-43 [PMID: 8564968]
  39. Acta Pharm Sin B. 2018 Oct;8(6):862-880 [PMID: 30505656]
  40. Int J Mol Sci. 2020 Sep 08;21(18): [PMID: 32911736]
  41. Mol Aspects Med. 2010 Feb;31(1):75-92 [PMID: 19995573]
  42. Bioorg Chem. 2019 Apr;85:179-190 [PMID: 30622010]
  43. Science. 2020 Apr 10;368(6487): [PMID: 32273439]
  44. Biochim Biophys Acta. 2009 May;1787(5):437-61 [PMID: 19159610]
  45. Biochim Biophys Acta Mol Basis Dis. 2020 May 1;1866(5):165674 [PMID: 31926263]
  46. PLoS One. 2014 Mar 12;9(3):e89351 [PMID: 24622734]
  47. ChemMedChem. 2017 Feb 3;12(3):250-256 [PMID: 28098432]
  48. Cancer Res. 1992 Sep 15;52(18):4935-41 [PMID: 1516050]
  49. Mol Aspects Med. 2007 Oct-Dec;28(5-6):607-45 [PMID: 17499351]
  50. Mitochondrion. 2013 May;13(3):199-208 [PMID: 22846431]
  51. Cancer Res. 2004 Jan 1;64(1):329-36 [PMID: 14729642]
  52. Biochim Biophys Acta Bioenerg. 2020 Oct 1;1861(10):148250 [PMID: 32569663]
  53. Biochim Biophys Acta Rev Cancer. 2021 Mar 29;1876(1):188534 [PMID: 33794332]
  54. Mol Cancer Res. 2007 Sep;5(9):943-55 [PMID: 17855663]
  55. Biochim Biophys Acta Biomembr. 2020 Oct 1;1862(10):183383 [PMID: 32522531]
  56. Int J Mol Sci. 2020 Nov 18;21(22): [PMID: 33217901]
  57. EBioMedicine. 2020 Sep;59:102943 [PMID: 32818805]
  58. Mol Cancer Res. 2020 Sep;18(9):1379-1391 [PMID: 32471883]
  59. Mol Cancer. 2011 Feb 07;10:12 [PMID: 21299897]
  60. J Membr Biol. 1979 Aug;49(2):105-21 [PMID: 490631]
  61. J Pathol. 2011 Jan;223(2):147-61 [PMID: 21125672]
  62. J Nat Prod. 2017 Aug 25;80(8):2232-2239 [PMID: 28782948]
  63. Cancer Cell. 2013 Mar 18;23(3):302-15 [PMID: 23477830]
  64. Eur J Med Chem. 2018 May 25;152:21-30 [PMID: 29684707]
  65. Adv Drug Deliv Rev. 2001 Jul 2;49(1-2):63-70 [PMID: 11377803]
  66. Med Res Rev. 2015 Nov;35(6):1127-55 [PMID: 26032847]
  67. Membranes (Basel). 2021 May 10;11(5): [PMID: 34068772]
  68. Eur J Med Chem. 2018 Nov 5;159:143-148 [PMID: 30278332]
  69. Anal Biochem. 2018 Jul 1;552:50-59 [PMID: 28711444]
  70. Biotechnol Adv. 2020 Jan - Feb;38:107409 [PMID: 31220568]
  71. Biochem Biophys Res Commun. 2013 Nov 15;441(2):275-9 [PMID: 24161394]
  72. Cell Metab. 2015 Jan 6;21(1):81-94 [PMID: 25565207]
  73. Expert Opin Ther Pat. 2014 Aug;24(8):913-23 [PMID: 24909232]
  74. Biochim Biophys Acta. 2013 Jan;1832(1):174-82 [PMID: 22846607]
  75. Cancer Res. 2003 Aug 1;63(15):4375-83 [PMID: 12907607]
  76. Int J Mol Sci. 2020 Sep 23;21(19): [PMID: 32977472]
  77. Cancer Res. 1987 Aug 15;47(16):4361-5 [PMID: 2886218]
  78. Expert Opin Ther Pat. 2016 Jun;26(6):643-55 [PMID: 27113324]
  79. Biochemistry (Mosc). 2007 Dec;72(12):1385-96 [PMID: 18205623]
  80. Ann Oncol. 1999 Aug;10(8):923-7 [PMID: 10509153]
  81. Biochem Pharmacol. 2013 Jun 1;85(11):1579-87 [PMID: 23499879]
  82. J Physiol. 2021 Mar;599(6):1745-1757 [PMID: 33347611]
  83. J Med Chem. 2013 Nov 27;56(22):9170-9 [PMID: 24147900]
  84. Nat Rev Cancer. 2011 May;11(5):325-37 [PMID: 21508971]
  85. Drug Discov Today. 2009 Sep;14(17-18):885-90 [PMID: 19520182]
  86. Antioxid Redox Signal. 2011 Dec 15;15(12):2937-49 [PMID: 21644835]
  87. RSC Med Chem. 2020 Jun 3;11(8):858-875 [PMID: 33479681]
  88. Cancer Res. 1996 Feb 1;56(3):544-50 [PMID: 8564969]
  89. Exp Biol Med (Maywood). 2016 Jun;241(12):1281-95 [PMID: 27022139]
  90. Cancer Cell. 2012 Oct 16;22(4):547-60 [PMID: 23079663]
  91. Mol Med Rep. 2016 Nov;14(5):4489-4495 [PMID: 27748864]
  92. Oncogene. 2008 Jul 17;27(31):4324-35 [PMID: 18372923]
  93. Clin Cancer Res. 2003 Jul;9(7):2866-75 [PMID: 12855667]
  94. Mol Pharm. 2014 Aug 4;11(8):2640-9 [PMID: 24811541]
  95. CA Cancer J Clin. 2018 Nov;68(6):394-424 [PMID: 30207593]
  96. Clin Cancer Res. 2000 Jan;6(1):42-9 [PMID: 10656430]
  97. Nat Med. 2018 Jul;24(7):1036-1046 [PMID: 29892070]
  98. Cell. 2015 Jul 30;162(3):552-63 [PMID: 26232225]
  99. Mol Pharmacol. 2007 May;71(5):1185-99 [PMID: 17220355]
  100. FASEB J. 2003 Oct;17(13):1972-4 [PMID: 12923074]
  101. Anticancer Drugs. 2011 Mar;22(3):223-33 [PMID: 21263311]
  102. J Mol Med (Berl). 2020 Feb;98(2):161-177 [PMID: 31970428]
  103. Eur J Med Chem. 2018 Jul 15;155:869-879 [PMID: 29960206]
  104. Arch Biochem Biophys. 1990 Dec;283(2):241-8 [PMID: 2275543]
  105. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5444-8 [PMID: 3474661]
  106. Med Res Rev. 2004 Jan;24(1):90-114 [PMID: 14595673]
  107. PLoS One. 2016 May 24;11(5):e0155946 [PMID: 27219337]
  108. Sci Adv. 2016 May 27;2(5):e1600200 [PMID: 27386546]
  109. Cancer Cell. 2006 Jun;9(6):425-34 [PMID: 16766262]

Grants

  1. 19-73-00155/Russian Science Foundation

Word Cloud

Created with Highcharts 10.0.0agentsanticancermitochondria-targetedmitochondrianewresearchcellsreactiveoxygenspeciesmitocanmitochondrialnaturalpentacyclictriterpenoidslipophilictriterpenicacidsCurrentlylinedrugsactivelydevelopingfieldbiomedicinemedicinalchemistrydistinguishingfeaturesuniversaltargetincludepresenceoverwhelmingmajoritytypestransformedcrucialimportancecytoplasmicorganellesenergyproductionregulationcelldeathpathwayswellgenerationmaintenancecalciumhomeostasisHencemitochondriotropicactingdestabilizationgoodprospectscancertherapyAvailableconsideredpromisingscaffoldsdevelopmentsecondarymetabolitesaffecttumorinitiateformationpresentpaperfocuseslatestoutcomessynthesisstudycytotoxicactivityconjugatescationicmoleculeshighlightsadvantagesapplyingnovelcomparedprototypeConjugationNaturalTriterpenicAcidsDelocalizedLipophilicCations:SelectiveTargetingCancerCellMitochondriaanti-cancerdelocalizedcationsmitocanstargeting

Similar Articles

Cited By