Changes in Aphid-Plant Interactions under Increased Temperature.

Jan Dampc, Mateusz Mołoń, Tomasz Durak, Roma Durak
Author Information
  1. Jan Dampc: Department of Experimental Biology and Chemistry, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland. ORCID
  2. Mateusz Mołoń: Department of Biochemistry and Cell Biology, University of Rzeszów, Zelwerowicza 4, 35-601 Rzeszow, Poland. ORCID
  3. Tomasz Durak: Department of Plant Physiology and Ecology, University of Rzeszów, Rejtana 16c, 35-959 Rzeszów, Poland. ORCID
  4. Roma Durak: Department of Experimental Biology and Chemistry, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland. ORCID

Abstract

Thermal stress in living organisms causes an imbalance between the processes of creating and neutralizing reactive oxygen species (ROS). The work aims to explain changes in the aphid-host plant interaction due to an increase in temperature. Tests were carried out at three constant temperatures (20, 25, or 28 °C). Firstly, changes in development of were determined. Secondly, the activity of enzymatic markers (superoxide dismutase (SOD), catalase (CAT), glutathione -transferase (GST), β-glucosidase, polyphenol oxidase (PPO), and peroxidase (POD)) in aphid tissues and host plant were analyzed at all temperatures. An increase in temperature to 28 °C had a negative effect on the biology of by shortening the period of reproduction and longevity, thus reducing the demographic parameters and fecundity. Two stages of the aphid's defensive response to short-term (24-96 h) and long-term (2 weeks) thermal stress were observed. Aphid defense responses varied considerably with temperature and were highest at 28 °C. In turn, for the plants, which were exposed to both abiotic stress caused by elevated temperature and biotic stress caused by aphid feeding, their enzymatic defense was more effective at 20 °C, when enzyme activities at their highest were observed.

Keywords

References

  1. Trends Ecol Evol. 2007 Jun;22(6):298-307 [PMID: 17324485]
  2. Neotrop Entomol. 2017 Feb;46(1):100-106 [PMID: 27553720]
  3. Plant Cell Rep. 2017 Jun;36(6):791-805 [PMID: 28391528]
  4. PLoS One. 2014 Nov 03;9(11):e111863 [PMID: 25365518]
  5. Biol Rev Camb Philos Soc. 2014 Aug;89(3):531-51 [PMID: 25165798]
  6. Free Radic Biol Med. 2001 Jun 1;30(11):1254-62 [PMID: 11368923]
  7. Annu Rev Entomol. 1998;43:195-216 [PMID: 15012389]
  8. Trends Plant Sci. 2007 Jan;12(1):29-36 [PMID: 17161643]
  9. Planta. 2006 Apr;223(5):932-47 [PMID: 16292568]
  10. J Chem Ecol. 2001 Jan;27(1):53-68 [PMID: 11382067]
  11. J Chem Ecol. 1992 Jul;18(7):1189-200 [PMID: 24254158]
  12. J Biol Chem. 1951 Nov;193(1):265-75 [PMID: 14907713]
  13. Proteomics. 2011 May;11(10):1985-2002 [PMID: 21500340]
  14. Bull Entomol Res. 2017 Jun;107(3):382-390 [PMID: 27809938]
  15. Plant Physiol. 2001 Feb;125(2):1074-85 [PMID: 11161062]
  16. Arch Insect Biochem Physiol. 2005 Mar;58(3):166-74 [PMID: 15717317]
  17. J Insect Physiol. 2012 May;58(5):634-47 [PMID: 22310012]
  18. Plant Physiol Biochem. 2017 Sep;118:529-540 [PMID: 28778044]
  19. Insects. 2020 Jul 11;11(7): [PMID: 32664609]
  20. J Insect Physiol. 2007 Jan;53(1):67-74 [PMID: 17126855]
  21. J Chem Ecol. 2009 Mar;35(3):320-5 [PMID: 19224277]
  22. Bull Entomol Res. 2002 Aug;92(4):309-19 [PMID: 12191439]
  23. Phytochemistry. 2013 Sep;93:49-62 [PMID: 23566717]
  24. Plant Biol (Stuttg). 2008 May;10(3):403-7 [PMID: 18426488]
  25. mBio. 2016 Oct 4;7(5): [PMID: 27703075]
  26. J Insect Physiol. 1965 Sep;11(9):1261-8 [PMID: 5828294]
  27. Phytochemistry. 2010 Aug;71(11-12):1289-97 [PMID: 20553698]
  28. Arch Insect Biochem Physiol. 2017 Nov;96(3): [PMID: 28872705]
  29. J Plant Physiol. 2019 Jan;232:160-170 [PMID: 30537603]
  30. Protoplasma. 2016 Jul;253(4):1063-79 [PMID: 26239447]
  31. Trends Plant Sci. 2002 Sep;7(9):405-10 [PMID: 12234732]
  32. Front Physiol. 2017 Nov 28;8:976 [PMID: 29234290]
  33. Plant Sci. 2006 Sep;171(3):382-8 [PMID: 22980208]
  34. J Chem Ecol. 1995 Oct;21(10):1511-30 [PMID: 24233680]
  35. J Plant Physiol. 2007 Feb;164(2):185-94 [PMID: 16376454]
  36. C R Biol. 2010 Jun-Jul;333(6-7):497-503 [PMID: 20541161]
  37. Insects. 2020 Jul 25;11(8): [PMID: 32722420]
  38. J Insect Physiol. 2015 Feb;73:47-52 [PMID: 25614965]
  39. Plant Physiol. 2008 Jul;147(3):1072-91 [PMID: 18467457]
  40. Plant Signal Behav. 2012 Oct 1;7(10):1321-9 [PMID: 22902801]
  41. PLoS One. 2016 Apr 11;11(4):e0152429 [PMID: 27065102]
  42. PLoS Biol. 2007 May;5(5):e96 [PMID: 17425405]
  43. Oecologia. 1993 Dec;96(4):457-465 [PMID: 28312451]
  44. Front Plant Sci. 2019 May 14;10:563 [PMID: 31139199]
  45. Methods Enzymol. 1984;105:121-6 [PMID: 6727660]

Grants

  1. not applicable/University of Rzeszów

Word Cloud

Created with Highcharts 10.0.0stresstemperature°Cchangesplant28enzymaticincreasetemperatures20markersaphidobserveddefensehighestcausedphysiologyThermallivingorganismscausesimbalanceprocessescreatingneutralizingreactiveoxygenspeciesROSworkaimsexplainaphid-hostinteractiondueTestscarriedthreeconstant25FirstlydevelopmentdeterminedSecondlyactivitysuperoxidedismutaseSODcatalaseCATglutathione-transferaseGSTβ-glucosidasepolyphenoloxidasePPOperoxidasePODtissueshostanalyzednegativeeffectbiologyshorteningperiodreproductionlongevitythusreducingdemographicparametersfecundityTwostagesaphid'sdefensiveresponseshort-term24-96hlong-term2weeksthermalAphidresponsesvariedconsiderablyturnplantsexposedabioticelevatedbioticfeedingeffectiveenzymeactivitiesChangesAphid-PlantInteractionsIncreasedTemperatureclimaticenvironmentalinsect

Similar Articles

Cited By (5)