An Investigation into the Critical Factors Influencing the Spread of during Chicken Handling in Commercial Kitchens in China.

Honggang Lai, Yuanyue Tang, Fangzhe Ren, Zeng Li, Fengming Li, Chaoyue Cui, Xinan Jiao, Jinlin Huang
Author Information
  1. Honggang Lai: Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China. ORCID
  2. Yuanyue Tang: Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China. ORCID
  3. Fangzhe Ren: Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
  4. Zeng Li: Jiangsu College of Tourism, Yangzhou 225000, China.
  5. Fengming Li: Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
  6. Chaoyue Cui: Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
  7. Xinan Jiao: Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China. ORCID
  8. Jinlin Huang: Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.

Abstract

Campylobacteriosis is the most common cause of bacterial gastroenteritis worldwide. Consumption of chicken meat is considered the main route for human infection with . This study aimed to determine the critical factors for cross-contamination in Chinese commercial kitchens during chicken handling. Five commercial kitchens were visited to detect occurrence from 2019 to 2020. Chicken samples (n = 363) and cotton balls from the kitchen surfaces (n = 479) were collected, and total bacterial counts and spp. were detected. Genotypic characterization of 57 isolates was performed by multilocus sequence typing (MLST). In total, 77.41% of chicken carcass samples and 37.37% of kitchen surfaces showed spp. contamination. Before chicken preparation, spp. were already present in the kitchen environment; however, chicken handling significantly increased spp. prevalence ( 0.05). After cleaning, boards, hands, and knives still showed high bacterial loads including spp., which related to poor sanitary conditions and ineffective handling practices. Poor sanitation conditions on kitchen surfaces offer greater opportunities for transmission. Molecular typing by MLST revealed that cross-contamination occurred during chicken preparation. The most prevalent sequence types, ST693 and ST45, showed strong biofilm formation ability. Consequently, sanitary condition of surfaces and biofilm formation ability of isolates were the critical points contributing to spread of in kitchen environment. These results provide insight into potential targeted control strategies along the farm-to-plate chain and highlight the necessity for improvements in sanitary conditions. The implementation of more effective cleaning measures should be considered to decrease the campylobacteriosis risk.

Keywords

References

  1. Int J Food Microbiol. 2007 Jan 1;113(1):54-61 [PMID: 17007949]
  2. J Sci Food Agric. 2018 Aug;98(11):4014-4032 [PMID: 29424050]
  3. J Hyg (Lond). 1984 Jun;92(3):357-64 [PMID: 6736643]
  4. Lett Appl Microbiol. 1999 Nov;29(5):354-8 [PMID: 10664978]
  5. Infect Immun. 2004 Oct;72(10):6132-8 [PMID: 15385518]
  6. Microb Drug Resist. 2020 Dec;26(12):1516-1525 [PMID: 31794692]
  7. Food Chem. 2019 Nov 1;297:124900 [PMID: 31253312]
  8. Emerg Infect Dis. 2011 Jan;17(1):7-15 [PMID: 21192848]
  9. Iran J Microbiol. 2019 Dec;11(6):527-534 [PMID: 32148685]
  10. J Food Prot. 2017 Mar 30;:750-757 [PMID: 28358259]
  11. EFSA J. 2018 Dec 12;16(12):e05500 [PMID: 32625785]
  12. J Clin Microbiol. 2001 Jan;39(1):14-23 [PMID: 11136741]
  13. Vet Microbiol. 2015 Jul 9;178(1-2):94-8 [PMID: 25960333]
  14. Microorganisms. 2020 Dec 07;8(12): [PMID: 33297499]
  15. J Food Prot. 2008 Oct;71(10):2087-93 [PMID: 18939758]
  16. Int J Food Microbiol. 2006 Apr 15;108(1):115-9 [PMID: 16545475]
  17. Appl Environ Microbiol. 2006 Jan;72(1):66-70 [PMID: 16391026]
  18. Biomed Environ Sci. 2013 Apr;26(4):243-8 [PMID: 23534464]
  19. Appl Environ Microbiol. 2014 Nov;80(22):7053-60 [PMID: 25192991]
  20. Foodborne Pathog Dis. 2014 Nov;11(11):861-7 [PMID: 25238587]
  21. J Food Prot. 2004 Sep;67(9):1892-903 [PMID: 15453579]
  22. Int J Food Microbiol. 2021 Jan 2;338:108984 [PMID: 33277046]
  23. Biomed Environ Sci. 2018 Aug;31(8):579-585 [PMID: 30231962]
  24. FEMS Microbiol Lett. 2014 Jul;356(1):8-19 [PMID: 24888326]
  25. Front Vet Sci. 2020 Apr 30;7:227 [PMID: 32426383]
  26. J Nutr Educ Behav. 2009 Nov-Dec;41(6):389-97 [PMID: 19879494]
  27. Symp Ser Soc Appl Microbiol. 2001;(30):115S-20S [PMID: 11422566]
  28. Epidemiol Infect. 2005 Oct;133(5):829-35 [PMID: 16181502]
  29. Risk Anal. 2007 Aug;27(4):803-13 [PMID: 17958493]
  30. MMWR Morb Mortal Wkly Rep. 2020 May 01;69(17):509-514 [PMID: 32352955]
  31. Appl Environ Microbiol. 2007 Jan;73(1):148-55 [PMID: 17085689]
  32. J Food Prot. 2017 Apr;80(4):590-597 [PMID: 28271927]
  33. Rev Argent Microbiol. 2021 Jan-Mar;53(1):59-63 [PMID: 32736818]
  34. Food Microbiol. 2017 Aug;65:185-192 [PMID: 28400001]
  35. Environ Int. 2017 Oct;107:111-130 [PMID: 28719840]
  36. J Food Prot. 2005 Jul;68(7):1421-30 [PMID: 16013380]
  37. Avian Pathol. 2017 Apr;46(2):215-223 [PMID: 27766896]
  38. Nat Microbiol. 2018 Apr;3(4):494-502 [PMID: 29588538]
  39. Curr Microbiol. 2015 Sep;71(3):341-6 [PMID: 26100240]
  40. J Food Prot. 2012 Jan;75(1):123-31 [PMID: 22221364]
  41. Epidemiol Infect. 2009 Aug;137(8):1111-20 [PMID: 19192321]
  42. Int J Food Microbiol. 2009 Jul 31;133(1-2):62-7 [PMID: 19446903]
  43. EFSA J. 2020 Nov 26;18(Suppl 1):e181106 [PMID: 33294045]
  44. J Food Prot. 2015 Jan;78(1):121-7 [PMID: 25581186]
  45. J Appl Microbiol. 2008 Nov;105(5):1392-401 [PMID: 18713282]
  46. Food Microbiol. 2009 Feb;26(1):44-51 [PMID: 19028304]
  47. Br Poult Sci. 1997 May;38(2):195-8 [PMID: 9158896]
  48. Int J Food Microbiol. 2002 Jun 5;76(1-2):143-50 [PMID: 12038571]

Word Cloud

Created with Highcharts 10.0.0chickenkitchenspphandlingsurfacessanitaryconditionsbacterialMLSTshowedbiofilmconsideredcriticalcross-contaminationcommercialkitchensChickensamplesn=totalisolatessequencetypingpreparationenvironmentcleaningformationabilityCampylobacteriosiscommoncausegastroenteritisworldwideConsumptionmeatmainroutehumaninfectionstudyaimeddeterminefactorsChineseFivevisiteddetectoccurrence20192020363cottonballs479collectedcountsdetectedGenotypiccharacterization57performedmultilocus7741%carcass3737%contaminationalreadypresenthoweversignificantlyincreasedprevalence005boardshandsknivesstillhighloadsincludingrelatedpoorineffectivepracticesPoorsanitationoffergreateropportunitiestransmissionMolecularrevealedoccurredprevalenttypesST693ST45strongConsequentlyconditionpointscontributingspreadresultsprovideinsightpotentialtargetedcontrolstrategiesalongfarm-to-platechainhighlightnecessityimprovementsimplementationeffectivemeasuresdecreasecampylobacteriosisriskInvestigationCriticalFactorsInfluencingSpreadHandlingCommercialKitchensChinaCampylobacter

Similar Articles

Cited By (3)