Olive Fruit Development and Ripening: Break on through to the "-Omics" Side.

Christina Skodra, Vaia Styliani Titeli, Michail Michailidis, Christos Bazakos, Ioannis Ganopoulos, Athanassios Molassiotis, Georgia Tanou
Author Information
  1. Christina Skodra: Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, 57001 Thessaloniki-Thermi, Greece.
  2. Vaia Styliani Titeli: Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, 57001 Thessaloniki-Thermi, Greece.
  3. Michail Michailidis: Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, 57001 Thessaloniki-Thermi, Greece. ORCID
  4. Christos Bazakos: Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-'Demeter' (ELGO-Demeter), 57001 Thessaloniki-Thermi, Greece.
  5. Ioannis Ganopoulos: Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-'Demeter' (ELGO-Demeter), 57001 Thessaloniki-Thermi, Greece. ORCID
  6. Athanassios Molassiotis: Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, 57001 Thessaloniki-Thermi, Greece.
  7. Georgia Tanou: Institute of Soil and Water Resources, Hellenic Agricultural Organization-'Demeter' (ELGO-Demeter), 57001 Thessaloniki-Thermi, Greece.

Abstract

The olive tree ( L. subsp. ) is the most important perennial crop in the Mediterranean region, producing table olives and oil, both appreciated for their nutraceutical value. Although olive oil quality traits have been extensively studied, much less attention has been paid to olive drupe. Olive drupe ripening is an extremely complex process involving numerous physiological and molecular changes that are unique in this fruit crop species. This review underlines the contribution of "-omics" techniques and of the recent advances in bioinformatics and analytical tools, notably next-generation sequencing and mass spectrometry, for the characterization of the olive ripening syndrome. The usage of high-dimensional datasets, such as transcriptomics, proteomics, and metabolomics, will provide a systematical description of the molecular-specific processes regulating olive fruit development and ripening. However, the incomplete sequence of the L. reference genome has largely hampered the utilization of omics tools towards olive drupe research. Due to this disadvantage, the most reported -omics studies on fruit trees concern metabolomics and only a few transcriptomics and proteomics. In this review, up-to-date applications of -omics technologies towards olive drupe biology are addressed, and future perspectives in olive fruit research are highlighted.

Keywords

References

  1. Crit Rev Food Sci Nutr. 2014;54(5):611-24 [PMID: 24261535]
  2. J Agric Food Chem. 2001 Sep;49(9):4267-70 [PMID: 11559121]
  3. J Agric Food Chem. 2013 Jul 10;61(27):6671-8 [PMID: 23768136]
  4. Front Plant Sci. 2016 Nov 10;7:1689 [PMID: 27891143]
  5. Plant Foods Hum Nutr. 2011 Mar;66(1):1-10 [PMID: 21253861]
  6. Front Plant Sci. 2017 Nov 07;8:1902 [PMID: 29163620]
  7. Anal Biochem. 2004 Jun 1;329(1):139-41 [PMID: 15136176]
  8. BMC Biol. 2020 Oct 26;18(1):148 [PMID: 33100219]
  9. Sci Rep. 2018 Jul 30;8(1):11436 [PMID: 30061655]
  10. J Nutr Biochem. 2002 Nov;13(11):636-644 [PMID: 12550060]
  11. Prog Nucl Magn Reson Spectrosc. 2017 Nov;102-103:61-97 [PMID: 29157494]
  12. BMC Plant Biol. 2019 Oct 16;19(1):428 [PMID: 31619170]
  13. BMC Genomics. 2009 Aug 26;10:399 [PMID: 19709400]
  14. Ann Bot. 2009 Jul;104(1):143-60 [PMID: 19465750]
  15. Genome. 2006 Dec;49(12):1606-15 [PMID: 17426775]
  16. Plant Physiol Biochem. 2017 Jul;116:68-79 [PMID: 28551418]
  17. Food Chem. 2013 Jan 1;136(1):41-5 [PMID: 23017390]
  18. J Agric Food Chem. 2011 Nov 23;59(22):12093-101 [PMID: 21995844]
  19. Funct Plant Biol. 2012 Aug;39(7):580-587 [PMID: 32480810]
  20. Electrophoresis. 2003 Jul;24(14):2369-75 [PMID: 12874872]
  21. Hortic Res. 2021 Apr 1;8(1):64 [PMID: 33790235]
  22. Gigascience. 2016 Jun 27;5:29 [PMID: 27346392]
  23. Plant Cell. 2004;16 Suppl:S170-80 [PMID: 15010516]
  24. Plant Genome. 2020 Mar;13(1):e20010 [PMID: 33016633]
  25. Front Plant Sci. 2016 Jan 19;6:1246 [PMID: 26834761]
  26. Biol Open. 2016 Jun 15;5(6):829-36 [PMID: 27215321]
  27. Anal Chim Acta. 2011 Mar 25;690(1):129-34 [PMID: 21414446]
  28. PLoS One. 2013 Sep 13;8(9):e73674 [PMID: 24058483]
  29. Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):E9413-E9422 [PMID: 29078332]
  30. J Plant Physiol. 2008 Oct 9;165(15):1545-62 [PMID: 18571766]
  31. BMC Plant Biol. 2012 Sep 10;12:162 [PMID: 22963618]
  32. PLoS One. 2013;8(1):e53563 [PMID: 23349718]
  33. J Agric Food Chem. 2015 Jun 10;63(22):5309-12 [PMID: 25998425]

Grants

  1. project code:2018ΣΕ01300000/Greek national funds through the Public Investments Program (PIP) of General Secretariat for Research & Technology (GSRT) under the Emblematic Αction "The Οlive Road" (project code:2018ΣΕ01300000).

MeSH Term

Computational Biology
Fruit
Genome, Plant
Genomics
High-Throughput Nucleotide Sequencing
Metabolomics
Olea
Proteome
Proteomics
Transcriptome

Chemicals

Proteome

Word Cloud

Created with Highcharts 10.0.0olivedrupefruitripeningtranscriptomicsproteomicsmetabolomicsLcropoilOlivereviewtoolstowardsresearch-omicsbiologytreesubspimportantperennialMediterraneanregionproducingtableolivesappreciatednutraceuticalvalueAlthoughqualitytraitsextensivelystudiedmuchlessattentionpaidextremelycomplexprocessinvolvingnumerousphysiologicalmolecularchangesuniquespeciesunderlinescontribution"-omics"techniquesrecentadvancesbioinformaticsanalyticalnotablynext-generationsequencingmassspectrometrycharacterizationsyndromeusagehigh-dimensionaldatasetswillprovidesystematicaldescriptionmolecular-specificprocessesregulatingdevelopmentHoweverincompletesequencereferencegenomelargelyhamperedutilizationomicsDuedisadvantagereportedstudiestreesconcernup-to-dateapplicationstechnologiesaddressedfutureperspectiveshighlightedFruitDevelopmentRipening:Break"-Omics"SideOleaeuropaeasystems

Similar Articles

Cited By