Temperature and Aging Affect Glyphosate Toxicity and Fatty Acid Composition in (Lee) (Collembola).

June Wee, Yun-Sik Lee, Yongeun Kim, Jino Son, Kijong Cho
Author Information
  1. June Wee: Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea.
  2. Yun-Sik Lee: O-Jeong Eco-Resilience Institute, Korea University, Seoul 02841, Korea. ORCID
  3. Yongeun Kim: O-Jeong Eco-Resilience Institute, Korea University, Seoul 02841, Korea.
  4. Jino Son: Biological and Genetics Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Korea.
  5. Kijong Cho: Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea.

Abstract

glyphosate is the most used herbicide worldwide, but enormous use of glyphosate has raised concerned about its environmental loadings. Although glyphosate is considered non-toxic, Toxicity data for soil non-target organisms according to temperature and aging are scarce. This study examined the Toxicity of glyphosate with the temperature (20 °C and 25 °C) and aging times (0 day and 7 days) in soil using a collembolan species, (Lee). The degradation of glyphosate was investigated. Fatty acid composition of was also investigated. The half-life of glyphosate was 2.38 days at 20 °C and 1.69 days at 25 °C. At 20 °C with 0 day of aging, the EC was estimated to be 93.5 mg kg. However, as the temperature and aging time increased, the glyphosate degradation increased, so no significant Toxicity was observed on juvenile production. The proportions of the arachidonic acid and stearic acid decreased and increased with the glyphosate treatment, respectively, even at 37.1 mg kg, at which no significant effects on juvenile production were observed. Our results showed that the changes in the glyphosate Toxicity with temperature and aging time were mostly dependent on the soil residual concentration. Furthermore, the changes in the Fatty acid compositions suggest that glyphosate could have a chronic effect on soil organisms.

Keywords

References

  1. Comp Biochem Physiol B Biochem Mol Biol. 2005 Feb;140(2):299-307 [PMID: 15649777]
  2. Integr Environ Assess Manag. 2014 Jul;10(3):327-41 [PMID: 24574147]
  3. EFSA J. 2023 Jul 26;21(7):e08164 [PMID: 37502013]
  4. Science. 2001 Nov 30;294(5548):1871-5 [PMID: 11729303]
  5. Comp Biochem Physiol B Biochem Mol Biol. 2004 May;138(1):41-52 [PMID: 15142535]
  6. J Hazard Mater. 2014 Jan 15;264:514-20 [PMID: 24239257]
  7. Ecotoxicol Environ Saf. 2017 Jun;140:214-221 [PMID: 28260687]
  8. Environ Sci Eur. 2016;28(1):3 [PMID: 27752438]
  9. Chemosphere. 2020 Apr;244:125540 [PMID: 32050338]
  10. Ecotoxicol Environ Saf. 2019 May 30;173:373-380 [PMID: 30784801]
  11. J Environ Qual. 2017 May;46(3):490-497 [PMID: 28724094]
  12. Front Physiol. 2019 Feb 07;9:1927 [PMID: 30792667]
  13. Chemosphere. 2020 Sep;255:126871 [PMID: 32413796]
  14. BMC Genomics. 2009 Dec 15;10:608 [PMID: 20003521]
  15. Sci Rep. 2019 Jun 12;9(1):8540 [PMID: 31189896]
  16. Pest Manag Sci. 2018 May;74(5):1027-1034 [PMID: 28643882]
  17. Sci Total Environ. 2009 Aug 1;407(16):4605-9 [PMID: 19447472]
  18. Sci Total Environ. 2018 Jun 15;627:544-552 [PMID: 29426177]
  19. Ecotoxicol Environ Saf. 2011 Jan;74(1):1-9 [PMID: 20951431]
  20. Environ Sci Pollut Res Int. 2019 Dec;26(36):36308-36321 [PMID: 31713822]
  21. Sci Total Environ. 2018 Apr 15;621:1352-1359 [PMID: 29042088]
  22. Environ Pollut. 2020 Apr;259:113767 [PMID: 31887598]
  23. Sci Rep. 2016 Jan 21;6:19731 [PMID: 26792548]
  24. R Soc Open Sci. 2017 Mar 22;4(3):160815 [PMID: 28405368]
  25. Environ Sci Pollut Res Int. 2017 May;24(15):13437-13451 [PMID: 28386901]
  26. J Hazard Mater. 2009 Sep 30;169(1-3):742-5 [PMID: 19411135]
  27. Chemosphere. 2010 Aug;80(9):1021-30 [PMID: 20579688]
  28. Environ Toxicol Chem. 2016 Nov;35(11):2742-2752 [PMID: 27028189]
  29. Environ Pollut. 2017 Oct;229:771-779 [PMID: 28693752]
  30. Sci Total Environ. 2019 Jul 20;675:90-97 [PMID: 31026647]
  31. Environ Monit Assess. 2018 Oct 27;190(11):676 [PMID: 30368595]
  32. Food Chem. 2017 Sep 1;230:567-571 [PMID: 28407950]
  33. Environ Geochem Health. 2018 Dec;40(6):2773-2784 [PMID: 29981014]
  34. Environ Toxicol Chem. 2004 Sep;23(9):2084-9 [PMID: 15378982]
  35. Pest Manag Sci. 2008 Apr;64(4):441-56 [PMID: 18161065]
  36. Environ Pollut. 2010 May;158(5):1689-95 [PMID: 20022415]
  37. J Agric Food Chem. 2012 Oct 24;60(42):10375-97 [PMID: 23013354]
  38. Proteomics. 2011 Jun;11(11):2294-307 [PMID: 21548089]
  39. Environ Pollut. 2000 Apr;108(1):3-14 [PMID: 15092962]
  40. Sci Total Environ. 2016 Dec 1;572:301-311 [PMID: 27505263]
  41. Ecotoxicol Environ Saf. 2018 Dec 15;165:527-532 [PMID: 30223165]

Grants

  1. 2016001970003/This subject is supported by Korea Ministry of Environment (MOE) as "The Chemical Accident Prevention Technology Development Project."(2016001970003).

Word Cloud

Created with Highcharts 10.0.0glyphosateaging°Cacidtoxicitysoiltemperature20daysdegradationincreasedGlyphosateherbicideorganisms250dayLeeinvestigatedFatty1mgkgtimesignificantobservedjuvenileproductionarachidonicchangesusedworldwideenormoususeraisedconcernedenvironmentalloadingsAlthoughconsiderednon-toxicdatanon-targetaccordingscarcestudyexaminedtimes7usingcollembolanspeciescompositionalsohalf-life23869ECestimated935Howeverproportionsstearicdecreasedtreatmentrespectivelyeven37effectsresultsshowedmostlydependentresidualconcentrationFurthermorefattycompositionssuggestchroniceffectTemperatureAgingAffectToxicityAcidCompositionCollembolamicroorganismriskassessment

Similar Articles

Cited By (1)