Fine scale analysis of malaria incidence in under-5: hierarchical Bayesian spatio-temporal modelling of routinely collected malaria data between 2012-2018 in Cameroon.

Celestin Danwang, Élie Khalil, Dorothy Achu, Marcelin Ateba, Moïse Abomabo, Jacob Souopgui, Mathilde De Keukeleire, Annie Robert
Author Information
  1. Celestin Danwang: Epidemiology and Biostatistics Unit, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Box: B1.30.13, Brussels, Belgium. danram07@yahoo.fr.
  2. Élie Khalil: Epidemiology and Biostatistics Unit, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Box: B1.30.13, Brussels, Belgium.
  3. Dorothy Achu: National Malaria Control Program, Ministry of Public Health, Yaoundé, Cameroon.
  4. Marcelin Ateba: National Malaria Control Program, Ministry of Public Health, Yaoundé, Cameroon.
  5. Moïse Abomabo: National Malaria Control Program, Ministry of Public Health, Yaoundé, Cameroon.
  6. Jacob Souopgui: Department of Molecular Biology, Institute of Biology and Molecular Medicine, Universite Libre de Bruxelles, Gosselies, Belgium.
  7. Mathilde De Keukeleire: Epidemiology and Biostatistics Unit, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Box: B1.30.13, Brussels, Belgium.
  8. Annie Robert: Epidemiology and Biostatistics Unit, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Box: B1.30.13, Brussels, Belgium.

Abstract

The current study aims to provide a fine-scale spatiotemporal estimate of Malaria incidence among Cameroonian under-5, and to determine its associated environmental factors, to set up preventive interventions that are adapted to each health district of Cameroon. Routine data on symptomatic Malaria in children under-5 collected in health facilities, between 2012 and 2018 were used. The trend of Malaria cases was assessed by the Mann-Kendall (M-K) test. A time series decomposition was applied to Malaria incidence to extract the seasonal component. Malaria risk was estimated by the standardised incidence ratio (SIR) and smoothed by a hierarchical Bayesian spatiotemporal model. In total, 4,052,216 cases of Malaria were diagnosed between 2012 and 2018. There was a gradual increase per year, from 369,178 in 2012 to 652,661 in 2018. After adjusting the data for completeness, the national incidence ranged from 489‰ in 2012 to 603‰ in 2018, with an upward trend (M-K test p-value < 0.001). At the regional level, an upward trend was observed in Adamaoua, Centre without Yaoundé, East, and South regions. There was a positive spatial autocorrelation of the number of Malaria incident-cases per district per year as suggested by the Moran's I test (statistic range between 0.11 and 0.53). The crude SIR showed a heterogeneous Malaria risk with values ranging from 0.00 to 8.90, meaning that some health districts have a risk 8.9 times higher than the national annual level. The incidence and risk of Malaria among under-5 in Cameroon are heterogeneous and vary significantly across health districts and seasons. It is crucial to adapt Malaria prevention measures to the specificities of each health district, in order to reduce its burden in health districts where the trend is upward.

References

  1. Epidemiology. 2015 Mar;26(2):247-54 [PMID: 25643104]
  2. BMC Infect Dis. 2018 Aug 22;18(1):413 [PMID: 30134861]
  3. Int J Health Geogr. 2018 Jan 16;17(1):2 [PMID: 29338736]
  4. BMC Med. 2020 Feb 10;18(1):26 [PMID: 32036785]
  5. Emerg Infect Dis. 2017 May;23(5):758-764 [PMID: 28418293]
  6. Infect Genet Evol. 2011 Jul;11(5):940-7 [PMID: 21414420]
  7. Trans R Soc Trop Med Hyg. 2005 May;99(5):347-54 [PMID: 15780341]
  8. J Vector Borne Dis. 2009 Mar;46(1):75-80 [PMID: 19326712]
  9. Spat Spatiotemporal Epidemiol. 2013 Dec;7:39-55 [PMID: 24377114]
  10. Malar J. 2015 Jan 28;14:31 [PMID: 25627987]
  11. BMC Infect Dis. 2010 May 19;10:119 [PMID: 20482824]
  12. N Engl J Med. 2016 Dec 22;375(25):2435-2445 [PMID: 27723434]
  13. BMC Med. 2019 Mar 7;17(1):52 [PMID: 30841892]
  14. Lancet. 2019 Jul 27;394(10195):332-343 [PMID: 31229233]
  15. Parasit Vectors. 2019 Oct 26;12(1):501 [PMID: 31655608]
  16. Spat Spatiotemporal Epidemiol. 2020 Aug;34:100360 [PMID: 32807397]
  17. BMC Infect Dis. 2018 Dec 7;18(1):636 [PMID: 30526507]
  18. PLoS Med. 2011 Dec;8(12):e1001142 [PMID: 22205883]
  19. Trop Med Health. 2017 Jun 15;45:14 [PMID: 28630585]
  20. Nature. 2015 Oct 8;526(7572):207-211 [PMID: 26375008]
  21. Crit Care. 2003 Aug;7(4):315-23 [PMID: 12930555]
  22. Lancet. 2019 Jul 27;394(10195):322-331 [PMID: 31229234]
  23. Ecol Lett. 2013 Jan;16(1):22-30 [PMID: 23050931]

MeSH Term

Cameroon
Child, Preschool
Humans
Incidence
Infant
Infant, Newborn
Malaria
Spatio-Temporal Analysis

Word Cloud

Created with Highcharts 10.0.0malariaincidencehealth20122018trendriskunder-5districtCameroondatatestperupward0districtsspatiotemporalamongcollectedcasesM-KSIRhierarchicalBayesianyearnationallevelheterogeneous8currentstudyaimsprovidefine-scaleestimateCamerooniandetermineassociatedenvironmentalfactorssetpreventiveinterventionsadaptedRoutinesymptomaticchildrenfacilitiesusedassessedMann-KendalltimeseriesdecompositionappliedextractseasonalcomponentMalariaestimatedstandardisedratiosmoothedmodeltotal4052216diagnosedgradualincrease369178652661adjustingcompletenessranged489‰603‰p-value < 0001regionalobservedAdamaouaCentrewithoutYaoundéEastSouthregionspositivespatialautocorrelationnumberincident-casessuggestedMoran'sstatisticrange1153crudeshowedvaluesranging0090meaning9timeshigherannualvarysignificantlyacrossseasonscrucialadaptpreventionmeasuresspecificitiesorderreduceburdenFinescaleanalysisunder-5:spatio-temporalmodellingroutinely2012-2018

Similar Articles

Cited By