Threshold dynamics of difference equations for SEIR model with nonlinear incidence function and infinite delay.

Soufiane Bentout, Salih Djilali, Sunil Kumar, Tarik Mohammed Touaoula
Author Information
  1. Soufiane Bentout: Laboratoire d'Analyse Non Linéaire et Mathématiques Appliquées, Université de Tlemcen, Tlemcen, Algeria.
  2. Salih Djilali: Laboratoire d'Analyse Non Linéaire et Mathématiques Appliquées, Université de Tlemcen, Tlemcen, Algeria.
  3. Sunil Kumar: Department of Mathematics, National Institute of Technology Jamshedpur, Jharkhand, 831014 India.
  4. Tarik Mohammed Touaoula: Laboratoire d'Analyse Non Linéaire et Mathématiques Appliquées, Université de Tlemcen, Tlemcen, Algeria.

Abstract

In this research, we explore the global conduct of age-structured SEIR system with nonlinear incidence functional (NIF), where a threshold behavior is obtained. More precisely, we will analyze the investigated model differently, where we will rewrite it as a difference equations with infinite delay by the help of the characteristic method. Using standard conditions on the nonlinear incidence functional that can fit with a vast class of a well-known incidence functionals, we investigated the global asymptotic stability (GAS) of the disease-free equilibrium (DFE) using a Lyapunov functional (LF) for . The total trajectory method is utilized for avoiding proving the local behavior of equilibria. Further, in the case we achieved the persistence of the infection and the GAS of the endemic equilibrium state (EE) using the weakly -persistence theory, where a proper LF is obtained. The achieved results are checked numerically using graphical representations.

References

  1. Math Biosci Eng. 2008 Apr;5(2):389-402 [PMID: 18613739]
  2. Bull Math Biol. 2007 Aug;69(6):1871-86 [PMID: 17443392]
  3. J Theor Biol. 2019 Nov 7;480:192-204 [PMID: 31394107]
  4. J Math Biol. 2011 Jul;63(1):125-39 [PMID: 20872265]
  5. Chaos Solitons Fractals. 2020 Nov;140:110171 [PMID: 32834652]
  6. Math Biosci Eng. 2019 Feb 26;16(3):1525-1553 [PMID: 30947431]
  7. Math Biosci Eng. 2009 Jul;6(3):603-10 [PMID: 19566130]
  8. J Math Biol. 1989;27(3):233-58 [PMID: 2746140]
  9. Adv Differ Equ. 2021;2021(1):115 [PMID: 33623526]
  10. Math Biosci Eng. 2010 Oct;7(4):837-50 [PMID: 21077711]
  11. Math Biosci. 2000 Aug;166(2):173-201 [PMID: 10924938]
  12. Chaos Solitons Fractals. 2020 Sep;138:109991 [PMID: 32565621]
  13. Bull Math Biol. 2006 Apr;68(3):615-26 [PMID: 16794947]
  14. Biology (Basel). 2020 Nov 03;9(11): [PMID: 33153015]
  15. J Math Biol. 1995;33(3):250-60 [PMID: 7897328]
  16. Math Biosci Eng. 2020 Oct 27;17(6):7332-7352 [PMID: 33378899]

Word Cloud

Created with Highcharts 10.0.0incidencenonlinearfunctionalusingglobalSEIRbehaviorobtainedwillinvestigatedmodeldifferenceequationsinfinitedelaymethodGASequilibriumLFachievedresearchexploreconductage-structuredsystemNIFthresholdpreciselyanalyzedifferentlyrewritehelpcharacteristicUsingstandardconditionscanfitvastclasswell-knownfunctionalsasymptoticstabilitydisease-freeDFELyapunovtotaltrajectoryutilizedavoidingprovinglocalequilibriacasepersistenceinfectionendemicstateEEweakly-persistencetheoryproperresultscheckednumericallygraphicalrepresentationsThresholddynamicsfunction

Similar Articles

Cited By