Chemical reactivity from an activation strain perspective.

Pascal Vermeeren, Trevor A Hamlin, F Matthias Bickelhaupt
Author Information
  1. Pascal Vermeeren: Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands. t.a.hamlin@vu.nl f.m.bickelhaupt@vu.nl. ORCID
  2. Trevor A Hamlin: Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands. t.a.hamlin@vu.nl f.m.bickelhaupt@vu.nl. ORCID
  3. F Matthias Bickelhaupt: Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands. t.a.hamlin@vu.nl f.m.bickelhaupt@vu.nl and Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands. ORCID

Abstract

Chemical reactions are ubiquitous in the universe, they are at the core of life, and they are essential for industrial processes. The drive for a deep understanding of how something occurs, in this case, the mechanism of a chemical reaction and the factors controlling its reactivity, is intrinsically valuable and an innate quality of humans. The level of insight and degree of understanding afforded by computational chemistry cannot be understated. The activation strain model is one of the most powerful tools in our arsenal to obtain unparalleled insight into reactivity. The relative energy of interacting reactants is evaluated along a reaction energy profile and related to the rigidity of the reactants' molecular structure and the strength of the stabilizing interactions between the deformed reactants: ΔE(ζ) = ΔEstrain(ζ) + ΔEint(ζ). Owing to the connectedness between the activation strain model and Kohn-Sham molecular orbital theory, one is able to obtain a causal relationship between both the sterics and electronics of the reactants and their mutual reactivity. Only when this is accomplished one can eclipse the phenomenological explanations that are commonplace in the literature and textbooks and begin to rationally tune and optimize chemical transformations. We showcase how the activation strain model is the ideal tool to elucidate fundamental organic reactions, the activation of small molecules by metallylenes, and the cycloaddition reactivity of cyclic diene- and dipolarophiles.

References

  1. Acc Chem Res. 2017 Sep 19;50(9):2297-2308 [PMID: 28876890]
  2. J Org Chem. 2020 Aug 7;85(15):9566-9584 [PMID: 32584576]
  3. Chemistry. 2016 Mar 18;22(13):4431-9 [PMID: 26879231]
  4. J Org Chem. 2003 Nov 28;68(24):9263-8 [PMID: 14629145]
  5. Science. 2007 Apr 20;316(5823):439-41 [PMID: 17446400]
  6. J Am Chem Soc. 2006 Jan 25;128(3):736-7 [PMID: 16417360]
  7. J Comput Chem. 2004 Jan 30;25(2):189-210 [PMID: 14648618]
  8. Chemistry. 2020 Dec 1;26(67):15538-15548 [PMID: 32866336]
  9. Chemphyschem. 2018 Jun 5;19(11):1315-1330 [PMID: 29542853]
  10. Chemistry. 2020 Sep 4;26(50):11529-11539 [PMID: 32220086]
  11. J Org Chem. 2021 Feb 19;86(4):3565-3573 [PMID: 33538169]
  12. Chemistry. 2014 Aug 18;20(34):10791-801 [PMID: 24616206]
  13. J Chem Theory Comput. 2018 Jul 10;14(7):3440-3450 [PMID: 29926727]
  14. Chemistry. 2020 Mar 23;26(17):3884-3893 [PMID: 31957943]
  15. Chemistry. 2020 Jan 2;26(1):306-315 [PMID: 31660651]
  16. Chem Sci. 2021 Feb 18;12(12):4526-4535 [PMID: 34163718]
  17. J Chem Theory Comput. 2014 Oct 14;10(10):4432-41 [PMID: 26588140]
  18. J Chem Phys. 2019 Apr 21;150(15):154122 [PMID: 31005066]
  19. Nat Commun. 2017 Jun 21;8(1):25 [PMID: 28638140]
  20. J Am Chem Soc. 2007 Sep 5;129(35):10646-7 [PMID: 17685614]
  21. Chemistry. 2019 May 2;25(25):6342-6348 [PMID: 30779472]
  22. Science. 2008 May 2;320(5876):664-7 [PMID: 18451302]
  23. Chemistry. 2014 Sep 1;20(36):11370-81 [PMID: 25081592]
  24. Chemistry. 2021 Mar 26;27(18):5683-5693 [PMID: 33289179]
  25. J Chem Theory Comput. 2005 Nov;1(6):1096-109 [PMID: 26631653]
  26. Eur J Inorg Chem. 2020 Sep 7;2020(33):3131-3142 [PMID: 32999589]
  27. Phys Chem Chem Phys. 2013 Oct 28;15(40):17354-65 [PMID: 24022294]
  28. J Comput Chem. 2019 Sep 30;40(25):2227-2233 [PMID: 31165500]
  29. Org Biomol Chem. 2010 Jul 21;8(14):3118-27 [PMID: 20490400]
  30. Chemistry. 2018 Aug 9;24(45):11637-11648 [PMID: 29806167]
  31. Chemistry. 2021 Jul 21;27(41):10610-10620 [PMID: 33780068]
  32. J Org Chem. 2008 Sep 19;73(18):7290-9 [PMID: 18690745]
  33. J Org Chem. 2021 Apr 2;86(7):5317-5326 [PMID: 33764064]
  34. J Org Chem. 2017 Aug 18;82(16):8668-8675 [PMID: 28712288]
  35. Chemistry. 2012 Sep 24;18(39):12395-403 [PMID: 22915249]
  36. J Am Chem Soc. 2004 Nov 24;126(46):15046-7 [PMID: 15547999]
  37. Chemistry. 2016 Aug 8;22(33):11685-98 [PMID: 27381647]
  38. Chemistry. 2012 Jun 4;18(23):7141-54 [PMID: 22517499]
  39. Angew Chem Int Ed Engl. 2019 Jun 24;58(26):8922-8926 [PMID: 31033118]
  40. Chem Asian J. 2020 Apr 1;15(7):1167-1174 [PMID: 32012430]
  41. Chem Soc Rev. 2014 Jul 21;43(14):4953-67 [PMID: 24699791]
  42. Chem Sci. 2021 Feb 9;12(13):4850-4865 [PMID: 34163736]
  43. Chem Commun (Camb). 2018 Apr 3;54(28):3448-3451 [PMID: 29537051]
  44. Sci Rep. 2018 Jul 16;8(1):10729 [PMID: 30013049]
  45. J Comput Chem. 2014 Nov 5;35(29):2140-5 [PMID: 25263428]
  46. Angew Chem Int Ed Engl. 2020 Apr 6;59(15):6201-6206 [PMID: 31944503]
  47. Chembiochem. 2010 Jun 14;11(9):1168-84 [PMID: 20455238]
  48. Wiley Interdiscip Rev Comput Mol Sci. 2015 Jul;5(4):324-343 [PMID: 26753009]
  49. Nat Protoc. 2020 Feb;15(2):649-667 [PMID: 31925400]
  50. Nature. 2010 Jan 14;463(7278):171-7 [PMID: 20075912]
  51. Chemistry. 2021 Mar 17;27(16):5180-5190 [PMID: 33169912]
  52. J Chem Phys. 2017 Jul 21;147(3):034112 [PMID: 28734285]
  53. Org Biomol Chem. 2014 Jan 7;12(1):187-99 [PMID: 24085334]
  54. Chem Rev. 2000 Jan 12;100(1):39-92 [PMID: 11749234]
  55. ChemistryOpen. 2019 Jan 15;8(1):49-57 [PMID: 30652065]
  56. J Am Chem Soc. 2008 Aug 6;130(31):10187-98 [PMID: 18613669]
  57. Chemistry. 2018 Dec 3;24(67):17823-17831 [PMID: 30256467]
  58. Chem Rev. 2001 Feb;101(2):329-60 [PMID: 11712250]
  59. J Org Chem. 2013 Mar 15;78(6):2327-35 [PMID: 23419137]
  60. Chem Sci. 2020 Aug 17;11(34):9309-9324 [PMID: 34123173]
  61. Chem Sci. 2020 Jul 9;11(31):8105-8112 [PMID: 34094173]
  62. Angew Chem Int Ed Engl. 2017 Aug 14;56(34):10070-10086 [PMID: 28447369]
  63. Chemistry. 2018 Apr 17;24(22):5927-5938 [PMID: 29457865]
  64. Phys Chem Chem Phys. 2019 May 15;21(19):9651-9664 [PMID: 30847454]
  65. Acc Chem Res. 2003 Nov;36(11):848-57 [PMID: 14622032]
  66. Chem Asian J. 2015 Oct;10(10):2272-82 [PMID: 26218844]
  67. Chem Sci. 2017 Nov 13;9(3):693-701 [PMID: 29629138]
  68. J Am Chem Soc. 2014 Oct 22;136(42):14654-7 [PMID: 25268830]
  69. J Org Chem. 2021 Mar 5;86(5):4320-4325 [PMID: 33577314]
  70. Inorg Chem. 2020 Sep 8;59(17):12711-12721 [PMID: 32806012]
  71. Chemistry. 2020 Sep 10;26(51):11806-11813 [PMID: 32329537]
  72. ChemistryOpen. 2014 Feb;3(1):29-36 [PMID: 24688892]
  73. Chemistry. 2009 Dec 7;15(47):13022-32 [PMID: 19852009]
  74. Dalton Trans. 2020 Mar 14;49(10):3129-3137 [PMID: 32073063]
  75. Angew Chem Int Ed Engl. 2021 Mar 29;60(14):7906-7912 [PMID: 33469976]
  76. J Comput Chem. 2013 Nov 5;34(29):2537-47 [PMID: 24037744]
  77. Phys Chem Chem Phys. 2014 Jun 21;16(23):11182-5 [PMID: 24817209]
  78. J Am Chem Soc. 2016 Mar 2;138(8):2512-5 [PMID: 26854652]
  79. Chem Rev. 2009 Aug;109(8):3479-511 [PMID: 19630390]
  80. Chem Commun (Camb). 2014 Feb 25;50(16):1944-6 [PMID: 24352137]
  81. J Org Chem. 2020 Nov 6;85(21):14087-14093 [PMID: 33079542]

MeSH Term

Humans
Quantum Theory
Thermodynamics

Word Cloud

Created with Highcharts 10.0.0reactivityactivationstrainmodeloneζChemicalreactionsunderstandingchemicalreactioninsightobtainenergyreactantsmolecularubiquitousuniversecorelifeessentialindustrialprocessesdrivedeepsomethingoccurscasemechanismfactorscontrollingintrinsicallyvaluableinnatequalityhumansleveldegreeaffordedcomputationalchemistryunderstatedpowerfultoolsarsenalunparalleledrelativeinteractingevaluatedalongprofilerelatedrigidityreactants'structurestrengthstabilizinginteractionsdeformedreactants:ΔE=ΔEstrain+ΔEintOwingconnectednessKohn-Shamorbitaltheoryablecausalrelationshipstericselectronicsmutualaccomplishedcaneclipsephenomenologicalexplanationscommonplaceliteraturetextbooksbeginrationallytuneoptimizetransformationsshowcaseidealtoolelucidatefundamentalorganicsmallmoleculesmetallylenescycloadditioncyclicdiene-dipolarophilesperspective

Similar Articles

Cited By