The reduced genome of a heritable symbiont from an ectoparasitic feather feeding louse.

Leila Alickovic, Kevin P Johnson, Bret M Boyd
Author Information
  1. Leila Alickovic: Center for the Study of Biological Complexity, Virginia Commonwealth University, 1000 W. Cary St., Suite 111, Richmond, VA, 23284-2030, USA.
  2. Kevin P Johnson: Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA.
  3. Bret M Boyd: Center for the Study of Biological Complexity, Virginia Commonwealth University, 1000 W. Cary St., Suite 111, Richmond, VA, 23284-2030, USA. boydbm@vcu.edu.

Abstract

BACKGROUND: Feather feeding lice are abundant and diverse ectoparasites that complete their entire life cycle on an avian host. The principal or sole source of nutrition for these lice is feathers. Feathers appear to lack four amino acids that the lice would require to complete development and reproduce. Several insect groups have acquired heritable and intracellular bacteria that can synthesize metabolites absent in an insect's diet, allowing insects to feed exclusively on nutrient-poor resources. Multiple species of feather feeding lice have been shown to harbor heritable and intracellular bacteria. We expected that these bacteria augment the louse's diet with amino acids and facilitated the evolution of these diverse and specialized parasites. Heritable symbionts of insects often have small genomes that contain a minimal set of genes needed to maintain essential cell functions and synthesize metabolites absent in the host insect's diet. Therefore, we expected the genome of a bacterial endosymbiont in feather lice would be small, but encode pathways for biosynthesis of amino acids.
RESULTS: We sequenced the genome of a bacterial symbiont from a feather feeding louse (Columbicola wolffhuegeli) that parasitizes the Pied Imperial Pigeon (Ducula bicolor) and used its genome to predict metabolism of amino acids based on the presence or absence of genes. We found that this bacterial symbiont has a small genome, similar to the genomes of heritable symbionts described in other insect groups. However, we failed to identify many of the genes that we expected would support metabolism of amino acids in the symbiont genome. We also evaluated other gene pathways and features of the highly reduced genome of this symbiotic bacterium.
CONCLUSIONS: Based on the data collected in this study, it does not appear that this bacterial symbiont can synthesize amino acids needed to complement the diet of a feather feeding louse. Our results raise additional questions about the biology of feather chewing lice and the roles of symbiotic bacteria in evolution of diverse avian parasites.

Keywords

References

  1. FASEB J. 2007 Apr;21(4):1058-66 [PMID: 17227954]
  2. Nucleic Acids Res. 2014 Jan;42(Database issue):D206-14 [PMID: 24293654]
  3. BMC Evol Biol. 2013 May 31;13:109 [PMID: 23725492]
  4. Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12168-73 [PMID: 20566863]
  5. Syst Biol. 2017 Nov 01;66(6):896-911 [PMID: 28108601]
  6. Z Parasitenkd. 1955;17(1):1-40 [PMID: 13248062]
  7. Int J Parasitol. 1971 May;1(1):21-9 [PMID: 5161201]
  8. Can J Microbiol. 1983 Jul;29(7):755-62 [PMID: 6413046]
  9. Appl Environ Microbiol. 2016 May 16;82(11):3185-97 [PMID: 26994086]
  10. Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):9063-8 [PMID: 19451630]
  11. G3 (Bethesda). 2014 Sep 11;4(11):2189-95 [PMID: 25213693]
  12. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  13. J Anim Ecol. 2008 May;77(3):558-64 [PMID: 18194262]
  14. PLoS Genet. 2012;8(11):e1002990 [PMID: 23166503]
  15. Adv Nutr Res. 1982;4:205-47 [PMID: 6175192]
  16. Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):E4859-68 [PMID: 25355905]
  17. Evolution. 2006 Oct;60(10):2158-67 [PMID: 17133872]
  18. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2873-8 [PMID: 8610134]
  19. Genome Res. 2017 May;27(5):768-777 [PMID: 28232478]
  20. Bioinformatics. 2001 Dec;17(12):1246-7 [PMID: 11751242]
  21. Syst Biol. 2017 Sep 01;66(5):786-798 [PMID: 28123117]
  22. Mol Biol Evol. 1992 Jul;9(4):678-87 [PMID: 1630306]
  23. Trends Microbiol. 2017 May;25(5):375-390 [PMID: 28336178]
  24. Sci Rep. 2015 Feb 10;5:8365 [PMID: 25666585]
  25. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  26. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  27. BMC Biol. 2013 Apr 15;11:45 [PMID: 23587344]
  28. Biol Rev Camb Philos Soc. 1989 Nov;64(4):409-34 [PMID: 2696562]
  29. J Nutr. 1975 Aug;105(8):1071-5 [PMID: 1142013]
  30. BMC Evol Biol. 2010 May 18;10:148 [PMID: 20482795]
  31. BMC Genomics. 2008 Feb 08;9:75 [PMID: 18261238]
  32. Curr Biol. 2019 Jun 3;29(11):R485-R495 [PMID: 31163163]
  33. Genome Res. 2017 May;27(5):824-834 [PMID: 28298430]
  34. Bioinformatics. 2014 Jan 1;30(1):31-7 [PMID: 23732276]
  35. Mol Biol Evol. 2017 Jul 1;34(7):1743-1757 [PMID: 28419279]
  36. Genome Res. 2015 Jul;25(7):1043-55 [PMID: 25977477]
  37. Eur J Biochem. 1983 May 16;132(3):501-7 [PMID: 6189711]
  38. Appl Microbiol Biotechnol. 2016 Mar;100(5):2083-96 [PMID: 26754820]
  39. Appl Environ Microbiol. 2007 Oct;73(20):6660-8 [PMID: 17766458]
  40. PLoS Genet. 2009 Jul;5(7):e1000565 [PMID: 19609354]
  41. Nature. 2000 Sep 7;407(6800):81-6 [PMID: 10993077]
  42. Trends Microbiol. 2021 Jan;29(1):41-53 [PMID: 32718697]
  43. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  44. Mol Biol Evol. 1998 Jul;15(7):871-9 [PMID: 9656487]
  45. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]

Grants

  1. DEB-1239788/Virginia Commonwealth University Life Sciences and National Science Foundation awards
  2. DEB-1342604/Virginia Commonwealth University Life Sciences and National Science Foundation awards
  3. DEB-1855812/Virginia Commonwealth University Life Sciences and National Science Foundation awards
  4. DEB-1926919/Virginia Commonwealth University Life Sciences and National Science Foundation awards

MeSH Term

Animals
Bacteria
Genome, Bacterial
Ischnocera
Parasites
Symbiosis

Word Cloud

Created with Highcharts 10.0.0genomeliceaminoacidsfeatherfeedingsymbiontheritablebacteriadietbacterialdiversesynthesizeexpectedsmallgeneslousecompleteavianhostappearinsectgroupsintracellularcanmetabolitesabsentinsect'sinsectsevolutionparasitessymbiontsgenomesneededpathwaysmetabolismreducedsymbioticBACKGROUND:FeatherabundantectoparasitesentirelifecycleprincipalsolesourcenutritionfeathersFeatherslackfourrequiredevelopmentreproduceSeveralacquiredallowingfeedexclusivelynutrient-poorresourcesMultiplespeciesshownharboraugmentlouse'sfacilitatedspecializedHeritableoftencontainminimalsetmaintainessentialcellfunctionsThereforeendosymbiontencodebiosynthesisRESULTS:sequencedColumbicolawolffhuegeliparasitizesPiedImperialPigeonDuculabicolorusedpredictbasedpresenceabsencefoundsimilardescribedHoweverfailedidentifymanysupportalsoevaluatedgenefeatureshighlybacteriumCONCLUSIONS:BaseddatacollectedstudycomplementresultsraiseadditionalquestionsbiologychewingrolesectoparasiticEndosymbiontGenomereductionKeratinMetaboliccomplementationPhthiraptera

Similar Articles

Cited By (5)