Prolonged Elevation of Arterial Stiffness Following Peak Aerobic Exercise in Individuals With Chronic Stroke.

Kenneth S Noguchi, Kevin Moncion, Elise Wiley, Maureen J MacDonald, Julie Richardson, Marc Roig, Ada Tang
Author Information
  1. Kenneth S Noguchi: School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada.
  2. Kevin Moncion: School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada.
  3. Elise Wiley: School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada.
  4. Maureen J MacDonald: Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
  5. Julie Richardson: School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada.
  6. Marc Roig: Memory and Motor Rehabilitation Laboratory, Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation, Laval, QC, Canada.
  7. Ada Tang: School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada.

Abstract

BACKGROUND: Stroke is a highly disabling condition and is the second leading cause of death globally. Engaging in aerobic exercise is important for the prevention of a recurrent stroke through improving markers of cardiovascular health such as blood pressure and arterial stiffness. While higher intensities of aerobic exercise generally elicit greater cardioprotective effects, little is known about the acute cardiovascular effects of a single session of high intensity aerobic exercise in people with stroke. The objective of this study was to model the recovery of arterial stiffness (carotid-femoral pulse wave velocity, cfPWV), heart rate and blood pressure following peak intensity aerobic exercise in individuals with chronic stroke.
METHODS: Ten participants with chronic stroke (mean ± SD age = 56.9 ± 11.8 years, median [IQR] years post-stroke = 2.9 [1.9]) performed a symptom-limited cardiopulmonary exercise test (CPET) on a recumbent stepper. Before the CPET, resting cfPWV, heart rate and blood pressure were measured. Immediately following the CPET, all outcomes were measured again continuously for 20 min to use all available observations ( = 245 observations) and capture any potential non-linear changes. Mixed model analyses were then applied to model post-exercise changes of cfPWV, heart rate and blood pressure.
RESULTS: Carotid-femoral pulse wave velocity was increased from rest following the CPET (9.0 ± 0.53 to 9.9 ± 0.52 m/s, < 0.001) and remained elevated for 20 min into post-exercise recovery, independent of heart rate ( = 0.001). Heart rate also increased from baseline (71.2 ± 3.2 to 77.4 ± 3.1 bpm, < 0.001) and remained elevated for 10 min post-exercise ( < 0.001). Finger systolic blood pressure was reduced from rest (117.3 ± 4.7 to 111.8 ± 4.6 mmHg, < 0.001) and remained reduced for 15 min after exercise ( < 0.001). There were no significant differences in finger diastolic or mean arterial pressures from rest.
CONCLUSION: This was the first study to capture continuous changes in cfPWV following peak aerobic exercise in any clinical population. The present study revealed that cfPWV is elevated for 20 min after peak aerobic exercise in individuals with stroke, which was independent of heart rate. These findings suggest there may be autonomic imbalances in large arteries following peak intensity aerobic exercise in individuals with stroke.

Keywords

References

  1. Am J Physiol Heart Circ Physiol. 2020 Dec 1;319(6):H1338-H1346 [PMID: 33035441]
  2. Hypertension. 2016 Jul;68(1):236-42 [PMID: 27245180]
  3. J Stroke Cerebrovasc Dis. 2014 Feb;23(2):259-66 [PMID: 23473623]
  4. Lancet. 2010 Jul 10;376(9735):112-23 [PMID: 20561675]
  5. Hypertens Res. 2017 Feb;40(2):146-172 [PMID: 27733765]
  6. Hypertens Res. 2013 Mar;36(3):226-31 [PMID: 23051656]
  7. J Am Coll Cardiol. 2010 Mar 30;55(13):1318-27 [PMID: 20338492]
  8. Clin Physiol Funct Imaging. 2019 Jan;39(1):42-50 [PMID: 29956874]
  9. Educ Psychol Meas. 2016 Feb;76(1):64-87 [PMID: 29795857]
  10. Stroke. 1989 Jul;20(7):864-70 [PMID: 2749846]
  11. Atherosclerosis. 2012 Dec;225(2):348-52 [PMID: 23083680]
  12. J Am Coll Cardiol. 2014 Oct 21;64(16):1740-50 [PMID: 25323263]
  13. Stroke. 2012 Oct;43(10):2637-42 [PMID: 22879099]
  14. Arterioscler Thromb Vasc Biol. 2005 May;25(5):932-43 [PMID: 15731494]
  15. J Appl Physiol (1985). 2020 May 1;128(5):1186-1195 [PMID: 32240012]
  16. J Am Heart Assoc. 2015 Jun 26;4(7): [PMID: 26116691]
  17. PLoS One. 2011;6(10):e26151 [PMID: 22028821]
  18. J Am Board Fam Med. 2007 Jan-Feb;20(1):65-71 [PMID: 17204737]
  19. Med Sci Sports Exerc. 1982;14(5):377-81 [PMID: 7154893]
  20. Medicine (Baltimore). 2019 Aug;98(34):e16938 [PMID: 31441885]
  21. J Cardiovasc Transl Res. 2012 Jun;5(3):243-55 [PMID: 22447229]
  22. J Strength Cond Res. 2008 Sep;22(5):1556-62 [PMID: 18714232]
  23. PM R. 2020 May;12(5):445-453 [PMID: 31600415]
  24. JAMA. 2016 Jan 26;315(4):407-8 [PMID: 26813213]
  25. Stroke. 1981 Mar-Apr;12(2):200-4 [PMID: 7233464]
  26. Eur J Appl Physiol. 2009 Mar;105(5):787-95 [PMID: 19125283]
  27. J Clin Hypertens (Greenwich). 2014 Jul;16(7):482-7 [PMID: 24853292]
  28. PLoS One. 2017 Feb 16;12(2):e0172294 [PMID: 28207854]
  29. J Hypertens. 2018 Aug;36(8):1743-1752 [PMID: 29677054]
  30. NeuroRehabilitation. 2013;32(2):327-35 [PMID: 23535796]
  31. J Hypertens. 1996 Jul;14(7):897-901 [PMID: 8818929]
  32. Diabetes Metab Syndr. 2017 Oct - Dec;11(4):237-243 [PMID: 27575048]
  33. J Hypertens. 2015 Oct;33(10):1981-96 [PMID: 26431185]
  34. Neurorehabil Neural Repair. 2017 Aug;31(8):726-735 [PMID: 28691645]
  35. Psychol Methods. 2001 Sep;6(3):282-96 [PMID: 11570233]
  36. J Am Coll Cardiol. 2015 Nov 10;66(19):2116-2125 [PMID: 26541923]
  37. Front Physiol. 2018 Feb 13;9:73 [PMID: 29487535]
  38. Stroke. 1988 May;19(5):604-7 [PMID: 3363593]
  39. Compr Physiol. 2015 Jul 1;5(3):1241-63 [PMID: 26140717]
  40. J Am Heart Assoc. 2019 Aug 6;8(15):e012601 [PMID: 31379238]
  41. Clin Rehabil. 2017 Dec;31(12):1561-1572 [PMID: 28523989]
  42. J Hum Hypertens. 2013 Aug;27(8):516-22 [PMID: 23389297]
  43. Circ Res. 2014 May 23;114(11):1804-14 [PMID: 24855203]
  44. Physiol Rep. 2017 Apr;5(7): [PMID: 28364031]
  45. Pharmacol Ther. 2010 May;126(2):159-72 [PMID: 20171982]
  46. Am J Respir Crit Care Med. 1998 Nov;158(5 Pt 1):1384-7 [PMID: 9817683]
  47. Lancet Neurol. 2019 May;18(5):439-458 [PMID: 30871944]

Word Cloud

Created with Highcharts 10.0.0exercise0aerobic±strokeratebloodpressureheart001cfPWVfollowing9min<arterialpeak=CPETstiffnessintensitystudymodelindividuals220changespost-exerciserestremainedelevated34Strokecardiovasculareffectsrecoverypulsewavevelocitychronicmean8yearsmeasuredobservationscaptureincreasedindependentreducedBACKGROUND:highlydisablingconditionsecondleadingcausedeathgloballyEngagingimportantpreventionrecurrentimprovingmarkershealthhigherintensitiesgenerallyelicitgreatercardioprotectivelittleknownacutesinglesessionhighpeopleobjectivecarotid-femoralMETHODS:TenparticipantsSDage5611median[IQR]post-stroke[19]performedsymptom-limitedcardiopulmonarytestrecumbentstepperrestingImmediatelyoutcomescontinuouslyuseavailable245potentialnon-linearMixedanalysesappliedRESULTS:Carotid-femoral5352m/sHeartalsobaseline71771bpm10Fingersystolic11771116mmHg15significantdifferencesfingerdiastolicpressuresCONCLUSION:firstcontinuousclinicalpopulationpresentrevealedfindingssuggestmayautonomicimbalanceslargearteriesProlongedElevationArterialStiffnessFollowingPeakAerobicExerciseIndividualsChronichemodynamics

Similar Articles

Cited By