A Comparative Analysis of the Temperature-Mortality Risks Using Different Weather Datasets Across Heterogeneous Regions.

Evan de Schrijver, Christophe L Folly, Rochelle Schneider, Dominic Royé, Oscar H Franco, Antonio Gasparrini, Ana M Vicedo-Cabrera
Author Information
  1. Evan de Schrijver: Institute of Social and Preventive Medicine (ISPM) University of Bern Bern Switzerland. ORCID
  2. Christophe L Folly: Institute of Social and Preventive Medicine (ISPM) University of Bern Bern Switzerland. ORCID
  3. Rochelle Schneider: Ф-Lab European Space Agency (ESA/ESRIN) Frascati Italy. ORCID
  4. Dominic Royé: Department of Geography University of Santiago de Compostela Santiago de Compostela Spain. ORCID
  5. Oscar H Franco: Institute of Social and Preventive Medicine (ISPM) University of Bern Bern Switzerland. ORCID
  6. Antonio Gasparrini: Centre on Climate Change and Planetary Health London School of Hygiene & Tropical Medicine, London (LSHTM) London UK. ORCID
  7. Ana M Vicedo-Cabrera: Institute of Social and Preventive Medicine (ISPM) University of Bern Bern Switzerland. ORCID

Abstract

New gridded climate datasets (GCDs) on spatially resolved modeled weather data have recently been released to explore the impacts of climate change. GCDs have been suggested as potential alternatives to weather station data in epidemiological assessments on health impacts of temperature and climate change. These can be particularly useful for assessment in regions that have remained understudied due to limited or low quality weather station data. However to date, no study has critically evaluated the application of GCDs of variable spatial resolution in temperature-mortality assessments across regions of different orography, climate, and size. Here we explored the performance of population-weighted daily mean temperature data from the global ERA5 reanalysis dataset in the 10 regions in the United Kingdom and the 26 cantons in Switzerland, combined with two local high-resolution GCDs (HadUK-grid UKPOC-9 and MeteoSwiss-grid-product, respectively) and compared these to weather station data and unweighted homologous series. We applied quasi-Poisson time series regression with distributed lag nonlinear models to obtain the GCD- and region-specific temperature-mortality associations and calculated the corresponding cold- and heat-related excess mortality. Although the five exposure datasets yielded different average area-level temperature estimates, these deviations did not result in substantial variations in the temperature-mortality association or impacts. Moreover, local population-weighted GCDs showed better overall performance, suggesting that they could be excellent alternatives to help advance knowledge on climate change impacts in remote regions with large climate and population distribution variability, which has remained largely unexplored in present literature due to the lack of reliable exposure data.

Keywords

References

  1. JAMA. 2014 Dec 24-31;312(24):2659-67 [PMID: 25536257]
  2. J Expo Sci Environ Epidemiol. 2011 Jul-Aug;21(4):372-84 [PMID: 20664652]
  3. Lancet. 2015 Jul 25;386(9991):369-75 [PMID: 26003380]
  4. Environ Health Perspect. 2007 Jul;115(7):1072-80 [PMID: 17637925]
  5. Environ Health Perspect. 2016 Jun;124(6):795-804 [PMID: 26636734]
  6. Environ Res. 2018 Feb;161:229-235 [PMID: 29161655]
  7. J Air Waste Manag Assoc. 2008 May;58(5):711-20 [PMID: 18512448]
  8. Public Health. 2016 Aug;137:26-34 [PMID: 26869382]
  9. Geohealth. 2021 May 01;5(5):e2020GH000363 [PMID: 34084982]
  10. Environ Health. 2019 Apr 18;18(1):35 [PMID: 30999920]
  11. Environ Res. 2020 Apr;183:109237 [PMID: 32058146]
  12. Lancet Planet Health. 2019 Jan;3(1):e26-e39 [PMID: 30528905]
  13. Environ Health Perspect. 2000 May;108(5):419-26 [PMID: 10811568]
  14. J Expo Sci Environ Epidemiol. 2015 Mar-Apr;25(2):160-6 [PMID: 23571405]
  15. Int J Biometeorol. 2016 Jan;60(1):73-83 [PMID: 25972307]
  16. Environ Health Perspect. 2012 Dec;120(12):1699-704 [PMID: 22889745]
  17. Environ Res. 2017 Jul;156:845-853 [PMID: 28499499]
  18. Occup Environ Med. 1998 Oct;55(10):651-6 [PMID: 9930084]
  19. Eur Heart J. 2019 May 21;40(20):1600-1608 [PMID: 30859207]
  20. Lancet. 2018 Dec 8;392(10163):2479-2514 [PMID: 30503045]
  21. Environ Sci Technol. 2016 Jan 5;50(1):79-88 [PMID: 26595236]
  22. Environ Health Perspect. 2019 Sep;127(9):97007 [PMID: 31553655]
  23. Stat Med. 2010 Sep 20;29(21):2224-34 [PMID: 20812303]
  24. Environ Epidemiol. 2019 Oct 14;3(5):e072 [PMID: 33195965]
  25. J Expo Sci Environ Epidemiol. 2019 Oct;29(6):777-789 [PMID: 30538298]
  26. BMC Med Res Methodol. 2014 Apr 23;14:55 [PMID: 24758509]
  27. Proc Natl Acad Sci U S A. 2020 May 26;117(21):11350-11355 [PMID: 32366654]
  28. Epidemiology. 2014 Mar;25(2):242-5 [PMID: 24487206]
  29. Int J Epidemiol. 2019 Aug 1;48(4):1101-1112 [PMID: 30815699]
  30. Environ Health. 2012 Oct 01;11:74 [PMID: 23025494]
  31. Lancet Planet Health. 2019 Jul;3(7):e297-e306 [PMID: 31230996]
  32. Environ Health Perspect. 2017 Aug 10;125(8):087006 [PMID: 28886602]
  33. Environ Int. 2018 Feb;111:239-246 [PMID: 29272855]
  34. J Epidemiol Community Health. 2011 Apr;65(4):340-5 [PMID: 20439353]
  35. Environ Res. 2016 Nov;151:610-617 [PMID: 27611992]

Grants

  1. MR/M022625/1/Medical Research Council
  2. MR/R013349/1/Medical Research Council

Word Cloud

Created with Highcharts 10.0.0climatedataGCDsweatherimpactschangeregionsstationtemperaturetemperature-mortalitydatasetsalternativesassessmentsremainedduedifferentperformancepopulation-weightedreanalysisdatasetlocalseriesmortalityexposureNewgriddedspatiallyresolvedmodeledrecentlyreleasedexploresuggestedpotentialepidemiologicalhealthcanparticularlyusefulassessmentunderstudiedlimitedlowqualityHoweverdatestudycriticallyevaluatedapplicationvariablespatialresolutionacrossorographysizeexploreddailymeanglobalERA510UnitedKingdom26cantonsSwitzerlandcombinedtwohigh-resolutionHadUK-gridUKPOC-9MeteoSwiss-grid-productrespectivelycomparedunweightedhomologousappliedquasi-PoissontimeregressiondistributedlagnonlinearmodelsobtainGCD-region-specificassociationscalculatedcorrespondingcold-heat-relatedexcessAlthoughfiveyieldedaveragearea-levelestimatesdeviationsresultsubstantialvariationsassociationMoreovershowedbetteroverallsuggestingexcellenthelpadvanceknowledgeremotelargepopulationdistributionvariabilitylargelyunexploredpresentliteraturelackreliableComparativeAnalysisTemperature-MortalityRisksUsingDifferentWeatherDatasetsAcrossHeterogeneousRegionsGriddedcoldheatspatiotemporalanalysis

Similar Articles

Cited By