Coherent Raman scattering microscopy: capable solution in search of a larger audience.

Richard C Prince, Eric O Potma
Author Information
  1. Richard C Prince: University of California, Irvine, Department of Biomedical Engineering, Irvine, California, United States.
  2. Eric O Potma: University of California, Irvine, Department of Biomedical Engineering, Irvine, California, United States.

Abstract

SIGNIFICANCE: Coherent Raman scattering (CRS) microscopy is an optical imaging technique with capabilities that could benefit a broad range of biomedical research studies.
AIM: We reflect on the birth, rapid rise, and inescapable growing pains of the technique and look back on nearly four decades of developments to examine where the CRS imaging approach might be headed in the next decade to come.
APPROACH: We provide a brief historical account of CRS microscopy, followed by a discussion of the challenges to disseminate the technique to a larger audience. We then highlight recent progress in expanding the capabilities of the CRS microscope and assess its current appeal as a practical imaging tool.
RESULTS: New developments in Raman tagging have improved the specificity and sensitivity of the CRS technique. In addition, technical advances have led to CRS microscopes that can capture hyperspectral data cubes at practical acquisition times. These improvements have broadened the application space of the technique.
CONCLUSION: The technical performance of the CRS microscope has improved dramatically since its inception, but these advances have not yet translated into a substantial user base beyond a strong core of enthusiasts. Nonetheless, new developments are poised to move the unique capabilities of the technique into the hands of more users.

Keywords

References

  1. J Biomed Opt. 2020 May;25(5):1-36 [PMID: 32358930]
  2. J Phys Chem Lett. 2011 May 9;2(11):1248-1253 [PMID: 21731798]
  3. Nature. 2013 Oct 17;502(7471):355-8 [PMID: 24132293]
  4. Theranostics. 2020 Jan 1;10(1):312-322 [PMID: 31903122]
  5. Biophys J. 2005 Nov;89(5):3480-90 [PMID: 16126824]
  6. Mol Phys. 2012 Aug;110(15-16):1927-1932 [PMID: 23504195]
  7. J Chem Phys. 2020 May 7;152(17):174201 [PMID: 32384848]
  8. J Biomed Opt. 2011 Feb;16(2):021117 [PMID: 21361680]
  9. J Biomed Opt. 2019 Apr;24(4):1-8 [PMID: 31007003]
  10. Opt Express. 2020 May 11;28(10):15505-15514 [PMID: 32403577]
  11. Nat Biomed Eng. 2019 May;3(5):402-413 [PMID: 31036888]
  12. Nature. 2017 Apr 27;544(7651):465-470 [PMID: 28424513]
  13. J Biomed Opt. 2014 Jul;19(7):71407 [PMID: 24615671]
  14. Science. 2010 Dec 3;330(6009):1368-70 [PMID: 21127249]
  15. Rev Sci Instrum. 2013 Aug;84(8):083705 [PMID: 24007071]
  16. Opt Lett. 2011 Jul 1;36(13):2387-9 [PMID: 21725420]
  17. Cancer Res. 2018 May 15;78(10):2503-2512 [PMID: 29535219]
  18. Opt Lett. 2002 Jul 1;27(13):1093-5 [PMID: 18026371]
  19. J Am Chem Soc. 2012 Dec 26;134(51):20681-9 [PMID: 23198907]
  20. Chemphyschem. 2008 Apr 4;9(5):697-9 [PMID: 18330856]
  21. J Biomed Opt. 2016 Jun;21(6):61003 [PMID: 26719944]
  22. Biophys J. 2002 Jul;83(1):502-9 [PMID: 12080137]
  23. Angew Chem Int Ed Engl. 2015 Aug 17;54(34):9821-5 [PMID: 26207979]
  24. J Biomed Opt. 2014;19(11):111605 [PMID: 24933682]
  25. Annu Rev Anal Chem (Palo Alto Calif). 2016 Jun 12;9(1):69-93 [PMID: 27306307]
  26. Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11226-31 [PMID: 23798434]
  27. J Am Chem Soc. 2014 Jun 18;136(24):8820-8 [PMID: 24869754]
  28. Biophys J. 2005 Jul;89(1):581-91 [PMID: 15834003]
  29. Curr Opin Chem Biol. 2016 Aug;33:46-57 [PMID: 27288951]
  30. Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1577-82 [PMID: 11171993]
  31. Adv Biol (Weinh). 2021 Jan;5(1):e2000184 [PMID: 33724734]
  32. Opt Express. 2021 Jan 18;29(2):2378-2386 [PMID: 33726433]
  33. Biophys J. 2020 Jul 21;119(2):258-264 [PMID: 32610090]
  34. Opt Express. 2009 Feb 16;17(4):2984-96 [PMID: 19219203]
  35. J Am Chem Soc. 2014 Jun 4;136(22):8027-33 [PMID: 24849912]
  36. Nat Methods. 2018 Mar;15(3):194-200 [PMID: 29334378]
  37. Chemphyschem. 2005 Jan;6(1):77-9 [PMID: 15688650]
  38. Arterioscler Thromb Vasc Biol. 2009 Sep;29(9):1342-8 [PMID: 19520975]
  39. Opt Express. 2008 Nov 24;16(24):19396-409 [PMID: 19030027]
  40. Sci Rep. 2013 Sep 25;3:2745 [PMID: 24067894]
  41. BMC Cancer. 2009 Jan 30;9:42 [PMID: 19183472]
  42. Nat Commun. 2018 Aug 6;9(1):2995 [PMID: 30082908]
  43. Nat Methods. 2014 Apr;11(4):410-2 [PMID: 24584195]
  44. Opt Lett. 2006 Feb 15;31(4):480-2 [PMID: 16496893]
  45. J Biophotonics. 2012 Oct;5(10):801-7 [PMID: 22389310]
  46. ACS Chem Biol. 2015 Mar 20;10(3):901-8 [PMID: 25560305]
  47. Anal Chem. 2020 Oct 6;92(19):13182-13191 [PMID: 32907318]
  48. Opt Express. 2013 Jul 1;21(13):15113-20 [PMID: 23842298]
  49. J Lipid Res. 2010 Nov;51(11):3091-102 [PMID: 20713649]
  50. Opt Lett. 2017 Apr 15;42(8):1548-1551 [PMID: 28409794]
  51. Opt Lett. 2004 Dec 1;29(23):2701-3 [PMID: 15605477]
  52. J Biomed Opt. 2011 Feb;16(2):021104 [PMID: 21361667]
  53. Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14658-63 [PMID: 17804796]
  54. Sci Rep. 2014 Oct 29;4:6807 [PMID: 25351207]
  55. Opt Lett. 1982 Aug 1;7(8):350-2 [PMID: 19714017]
  56. J Phys Chem B. 2018 Oct 4;122(39):9218-9224 [PMID: 30208710]
  57. Plast Reconstr Surg. 2009 Feb;123(2 Suppl):123S-130S [PMID: 19182671]
  58. Sci Rep. 2016 Nov 24;6:37516 [PMID: 27881844]
  59. Nat Photonics. 2014;8:627-634 [PMID: 25621002]
  60. Nat Photonics. 2019 Jun;13(6):412-417 [PMID: 32607124]
  61. Opt Lett. 2017 May 1;42(9):1696-1699 [PMID: 28454138]
  62. Sci Rep. 2015 Jan 22;5:7930 [PMID: 25608867]
  63. J Biophotonics. 2012 May;5(5-6):387-95 [PMID: 22344721]
  64. J Phys Chem Lett. 2018 Aug 2;9(15):4294-4301 [PMID: 30001137]
  65. J Biophotonics. 2019 Sep;12(9):e201900028 [PMID: 31081280]
  66. Biomed Opt Express. 2011 Apr 22;2(5):1296-306 [PMID: 21559141]
  67. Biophys J. 2011 Nov 2;101(9):2277-83 [PMID: 22067168]
  68. Anal Chem. 2017 Apr 18;89(8):4502-4507 [PMID: 28345862]
  69. Science. 1999 May 28;284(5419):1445 [PMID: 10383317]
  70. J Biomed Opt. 2007 Sep-Oct;12(5):054007 [PMID: 17994895]
  71. Opt Lett. 2017 Feb 15;42(4):659-662 [PMID: 28198892]
  72. Proc Natl Acad Sci U S A. 2017 May 2;114(18):4805-4810 [PMID: 28373558]
  73. Opt Lett. 2012 Feb 1;37(3):431-3 [PMID: 22297376]
  74. Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16807-12 [PMID: 16263923]
  75. Angew Chem Int Ed Engl. 2014 Jun 2;53(23):5827-31 [PMID: 24753329]
  76. Biophys J. 2012 Apr 18;102(8):1988-95 [PMID: 22768956]
  77. J Am Chem Soc. 2011 Apr 27;133(16):6102-5 [PMID: 21443184]

Grants

  1. R01 GM132506/NIGMS NIH HHS

MeSH Term

Microscopy
Optical Imaging
Spectrum Analysis, Raman

Word Cloud

Created with Highcharts 10.0.0CRStechniqueRamanimagingscatteringmicroscopycapabilitiesdevelopmentsCoherentopticallargeraudiencemicroscopepracticalimprovedtechnicaladvancesSIGNIFICANCE:benefitbroadrangebiomedicalresearchstudiesAIM:reflectbirthrapidriseinescapablegrowingpainslookbacknearlyfourdecadesexamineapproachmightheadednextdecadecomeAPPROACH:providebriefhistoricalaccountfolloweddiscussionchallengesdisseminatehighlightrecentprogressexpandingassesscurrentappealtoolRESULTS:NewtaggingspecificitysensitivityadditionledmicroscopescancapturehyperspectraldatacubesacquisitiontimesimprovementsbroadenedapplicationspaceCONCLUSION:performancedramaticallysinceinceptionyettranslatedsubstantialuserbasebeyondstrongcoreenthusiastsNonethelessnewpoisedmoveuniquehandsusersmicroscopy:capablesolutionsearchcoherentlipidmetabolism

Similar Articles

Cited By