Dielectric Elastomer Actuators, Neuromuscular Interfaces, and Foreign Body Response in Artificial Neuromuscular Prostheses: A Review of the Literature for an In Vivo Application.

Alessandro Bruschi, Davide Maria Donati, Peter Choong, Enrico Lucarelli, Gordon Wallace
Author Information
  1. Alessandro Bruschi: 3rd Orthopaedic and Traumatologic Clinic prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, Bologna, 40136, Italy. ORCID
  2. Davide Maria Donati: 3rd Orthopaedic and Traumatologic Clinic prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, Bologna, 40136, Italy.
  3. Peter Choong: University of Melbourne-Department of Surgery, St. Vincent's Hospital, Fitzroy, Melbourne, Victoria, 3065, Australia.
  4. Enrico Lucarelli: Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, 3rdOrthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna, 40136, Italy.
  5. Gordon Wallace: Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW, 2522, Australia.

Abstract

The inability to replace human muscle in surgical practice is a significant challenge. An artificial muscle controlled by the nervous system is considered a potential solution for this. Here, this is defined as a neuromuscular prosthesis. Muscle loss and dysfunction related to musculoskeletal oncological impairments, neuromuscular diseases, trauma or spinal cord injuries can be treated through artificial muscle implantation. At present, the use of dielectric elastomer actuators working as capacitors appears a promising option. Acrylic or silicone elastomers with carbon nanotubes functioning as the electrode achieve mechanical performances similar to human muscle in vitro. However, mechanical, electrical, and biological issues have prevented clinical application to date. Here materials and mechatronic solutions are presented which can tackle current clinical problems associated with implanting an artificial muscle controlled by the nervous system. Progress depends on the improvement of the actuation properties of the elastomer, seamless or wireless integration between the nervous system and the artificial muscle, and on reducing the foreign body response. It is believed that by combining the mechanical, electrical, and biological solutions proposed here, an artificial neuromuscular prosthesis may be a reality in surgical practice in the near future.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15211-6 [PMID: 20696917]
  2. J Diabetes Sci Technol. 2008 Nov;2(6):1003-15 [PMID: 19885290]
  3. Biomaterials. 2002 Oct;23(19):3969-75 [PMID: 12162329]
  4. Ann Biomed Eng. 2014 Jul;42(7):1508-16 [PMID: 24248559]
  5. Cell. 2020 Apr 2;181(1):115-135 [PMID: 32220309]
  6. Science. 2019 Jul 12;365(6449):150-155 [PMID: 31296765]
  7. Biomaterials. 2014 Aug;35(25):6838-49 [PMID: 24856104]
  8. Adv Healthc Mater. 2020 Feb;9(4):e1901137 [PMID: 31944612]
  9. Traffic. 2007 Apr;8(4):311-30 [PMID: 17274798]
  10. Artif Organs. 2015 Jul;39(7):615-26 [PMID: 25808086]
  11. Adv Mater. 2018 Jan;30(4): [PMID: 29131405]
  12. Biomaterials. 2013 Dec;34(38):9737-46 [PMID: 24060424]
  13. Am J Physiol Lung Cell Mol Physiol. 2006 Jan;290(1):L162-9 [PMID: 16344333]
  14. Biomaterials. 2011 Oct;32(29):6893-9 [PMID: 21704366]
  15. Science. 2000 Feb 4;287(5454):836-9 [PMID: 10657293]
  16. ACS Nano. 2015;9(4):4465-74 [PMID: 25803728]
  17. Front Neurosci. 2020 Jan 30;13:1442 [PMID: 32116485]
  18. Neurol Med Chir (Tokyo). 2000 Apr;40(4):187-99 [PMID: 10853317]
  19. Adv Drug Deliv Rev. 2008 Jan 14;60(2):184-98 [PMID: 18045729]
  20. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8841-6 [PMID: 9671766]
  21. Int J Pharm. 2010 Jan 15;384(1-2):78-86 [PMID: 19800956]
  22. Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:1017-20 [PMID: 26736437]
  23. J Biomed Mater Res. 2002 Sep 15;61(4):505-13 [PMID: 12125674]
  24. Adv Drug Deliv Rev. 2017 May 15;114:184-192 [PMID: 28712923]
  25. Aesthetic Plast Surg. 2008 Jan;32(1):32-40 [PMID: 17968613]
  26. Nat Nanotechnol. 2009 Feb;4(2):126-33 [PMID: 19197316]
  27. PLoS One. 2010 Jul 29;5(7):e11862 [PMID: 20686681]
  28. J Biomed Mater Res A. 2004 Aug 1;70(2):245-55 [PMID: 15227669]
  29. Curr Med Chem. 2019;26(38):6851-6877 [PMID: 30474523]
  30. Adv Mater. 2019 Apr;31(15):e1805867 [PMID: 30803072]
  31. J Biomed Mater Res. 1984 Apr;18(4):395-401 [PMID: 6234318]
  32. J Biomater Sci Polym Ed. 2014;25(14-15):1502-13 [PMID: 24953966]
  33. Biomaterials. 2005 Dec;26(35):7457-70 [PMID: 16024077]
  34. Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10287-92 [PMID: 12122211]
  35. Nanotechnology. 2014 Apr 25;25(16):165102 [PMID: 24670610]
  36. J Neurosci. 2011 Sep 7;31(36):12945-53 [PMID: 21900573]
  37. J Biomed Mater Res. 1976 May;10(3):391-7 [PMID: 1270456]
  38. J Cardiovasc Transl Res. 2011 Oct;4(5):523-7 [PMID: 21710333]
  39. PLoS One. 2013 Sep 30;8(9):e74417 [PMID: 24098649]
  40. J Mater Sci Mater Med. 2007 Jul;18(7):1263-77 [PMID: 17443395]
  41. Semin Immunol. 2008 Apr;20(2):86-100 [PMID: 18162407]
  42. Biosens Bioelectron. 2016 Mar 15;77:149-56 [PMID: 26402593]
  43. Nat Mater. 2015 Jun;14(6):643-51 [PMID: 25985456]
  44. Biomaterials. 2002 Nov;23(21):4185-92 [PMID: 12194521]
  45. Tissue Eng. 2006 Jul;12(7):1955-70 [PMID: 16889525]
  46. Adv Mater. 2018 Feb;30(6): [PMID: 29250838]
  47. J Immunol. 1971 Dec;107(6):1535-46 [PMID: 5120396]
  48. Nanomedicine. 2018 Oct;14(7):2521-2532 [PMID: 28552645]
  49. Prog Neurobiol. 2014 May;116:1-12 [PMID: 24380784]
  50. Proc Natl Acad Sci U S A. 2019 Feb 12;116(7):2476-2481 [PMID: 30679271]
  51. Adv Mater. 2014 Jan 8;26(1):149-61 [PMID: 24307641]
  52. Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5074-6 [PMID: 21095801]
  53. Artif Organs. 2015 Apr;39(4):378-87 [PMID: 25349072]
  54. Nat Mater. 2012 Dec;11(12):1065-73 [PMID: 23142839]
  55. J Neural Eng. 2015 Feb;12(1):011001 [PMID: 25460808]
  56. Neural Regen Res. 2016 Jul;11(7):1062-3 [PMID: 27630680]
  57. Clin Orthop Relat Res. 2014 Oct;472(10):2984-90 [PMID: 24562875]
  58. Nat Mater. 2019 Aug;18(8):892-904 [PMID: 31235902]
  59. Acc Chem Res. 2019 Feb 19;52(2):316-325 [PMID: 30698006]
  60. J Biomater Sci Polym Ed. 2002;13(6):651-65 [PMID: 12182550]
  61. ACS Nano. 2012 Mar 27;6(3):2041-55 [PMID: 22339712]
  62. Adv Drug Deliv Rev. 2019 Apr;144:148-161 [PMID: 31491445]
  63. Adv Mater. 2010 Mar 5;22(9):920-32 [PMID: 20217815]
  64. J Control Release. 2010 Nov 1;147(3):400-7 [PMID: 20727922]
  65. IEEE Int Conf Rehabil Robot. 2019 Jun;2019:499-505 [PMID: 31374679]
  66. Prosthet Orthot Int. 2014 Dec;38(6):492-504 [PMID: 24150930]
  67. Artif Cells Nanomed Biotechnol. 2016;44(1):150-6 [PMID: 24978443]
  68. Mater Sci Eng C Mater Biol Appl. 2019 Sep;102:511-523 [PMID: 31147022]
  69. Biomaterials. 2009 Feb;30(4):436-44 [PMID: 18977028]
  70. Lancet Neurol. 2019 Dec;18(12):1112-1122 [PMID: 31587955]
  71. Adv Mater. 2019 Jul;31(28):e1901408 [PMID: 31106490]
  72. Adv Mater. 2011 Sep 8;23(34):3989-94 [PMID: 21796688]
  73. IEEE Trans Biomed Eng. 2009 Jan;56(1):159-71 [PMID: 19224729]
  74. Macromol Rapid Commun. 2016 Mar;37(5):378-413 [PMID: 26773231]
  75. Nat Biomed Eng. 2018 Dec;2(12):894-906 [PMID: 30931173]
  76. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6710-5 [PMID: 10823909]
  77. Int J Nanomedicine. 2011;6:2653-66 [PMID: 22114496]
  78. J Immunol. 1971 Dec;107(6):1547-57 [PMID: 5120397]
  79. Bioinspir Biomim. 2017 Jan 23;12(1):011003 [PMID: 28114111]
  80. JAMA. 2009 Feb 11;301(6):619-28 [PMID: 19211469]
  81. Sci Robot. 2019 Aug 28;4(33): [PMID: 33137787]
  82. Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5723-6 [PMID: 24111037]
  83. Eplasty. 2014 Jan 31;14:e7 [PMID: 24570768]
  84. Int J Mol Sci. 2020 Mar 06;21(5): [PMID: 32155716]
  85. Acta Biomater. 2013 Jan;9(1):4513-24 [PMID: 23036951]
  86. Chem Soc Rev. 2018 Jun 5;47(11):4198-4232 [PMID: 29667656]
  87. Materials (Basel). 2018 Mar 08;11(3): [PMID: 29518054]
  88. Front Chem. 2019 Jun 11;7:399 [PMID: 31245352]
  89. Int J Pharm. 2016 Mar 30;501(1-2):278-99 [PMID: 26827920]
  90. J Diabetes Sci Technol. 2015 Aug 25;9(5):966-77 [PMID: 26306495]
  91. Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:1319-22 [PMID: 26736511]
  92. Brain Behav. 2017 Jun 30;7(8):e00755 [PMID: 28828216]
  93. Acta Biomater. 2012 Mar;8(3):978-87 [PMID: 22166681]
  94. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1350-3 [PMID: 23366149]
  95. Clin Neurophysiol. 2005 Sep;116(9):2240-50 [PMID: 16055377]
  96. J Transl Med. 2007 Jul 01;5:31 [PMID: 17603911]
  97. Int J Mol Sci. 2019 Feb 01;20(3): [PMID: 30717232]
  98. Adv Healthc Mater. 2021 Jul;10(13):e2100041 [PMID: 34085772]
  99. ACS Appl Mater Interfaces. 2017 Jul 5;9(26):21998-22005 [PMID: 28593763]

MeSH Term

Elastomers
Electrodes
Foreign Bodies
Humans
Nanotubes, Carbon
Prostheses and Implants

Chemicals

Elastomers
Nanotubes, Carbon

Word Cloud

Created with Highcharts 10.0.0muscleartificialnervoussystemneuromuscularelastomermechanicalhumansurgicalpracticecontrolledprosthesiscandielectricactuatorscarbonnanotubeselectricalbiologicalclinicalsolutionsforeignbodyresponseNeuromuscularinabilityreplacesignificantchallengeconsideredpotentialsolutiondefinedMusclelossdysfunctionrelatedmusculoskeletaloncologicalimpairmentsdiseasestraumaspinalcordinjuriestreatedimplantationpresentuseworkingcapacitorsappearspromisingoptionAcrylicsiliconeelastomersfunctioningelectrodeachieveperformancessimilarvitroHoweverissuespreventedapplicationdatematerialsmechatronicpresentedtacklecurrentproblemsassociatedimplantingProgressdependsimprovementactuationpropertiesseamlesswirelessintegrationreducingbelievedcombiningproposedmayrealitynearfutureDielectricElastomerActuatorsInterfacesForeignBodyResponseArtificialProstheses:ReviewLiteratureVivoApplicationmusclesgraphene

Similar Articles

Cited By