Potential application of novel technology developed for instant decontamination of personal protective equipment before the doffing step.

Luís Alberto Brêda Mascarenhas, Bruna Aparecida Souza Machado, Leticia de Alencar Pereira Rodrigues, Katharine Valéria Saraiva Hodel, Alex Álisson Bandeira Santos, Paulo Roberto Freitas Neves, Leone Peter Correia da Silva Andrade, Milena Botelho Soares, Jailson Bittencourt de Andrade, Roberto Badaró
Author Information
  1. Luís Alberto Brêda Mascarenhas: SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Bahia, Brazil.
  2. Bruna Aparecida Souza Machado: SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Bahia, Brazil. ORCID
  3. Leticia de Alencar Pereira Rodrigues: SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Bahia, Brazil.
  4. Katharine Valéria Saraiva Hodel: SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Bahia, Brazil.
  5. Alex Álisson Bandeira Santos: SENAI CIMATEC, National Service of Industrial Learning-SENAI, Computational Modeling and Industrial Technology, University Center SENAI/CIMATEC, Salvador, Bahia, Brazil.
  6. Paulo Roberto Freitas Neves: SENAI CIMATEC, National Service of Industrial Learning-SENAI, Computational Modeling and Industrial Technology, University Center SENAI/CIMATEC, Salvador, Bahia, Brazil.
  7. Leone Peter Correia da Silva Andrade: SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Bahia, Brazil.
  8. Milena Botelho Soares: SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Bahia, Brazil.
  9. Jailson Bittencourt de Andrade: SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Bahia, Brazil. ORCID
  10. Roberto Badaró: SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Bahia, Brazil.

Abstract

The use of personal protective equipment (PPE) has been considered the most effective way to avoid the contamination of healthcare workers by different microorganisms, including SARS-CoV-2. A spray disinfection technology (chamber) was developed, and its efficacy in instant decontamination of previously contaminated surfaces was evaluated in two exposure times. Seven test microorganisms were prepared and inoculated on the surface of seven types of PPE (respirator mask, face shield, shoe, glove, cap, safety glasses and lab coat). The tests were performed on previously contaminated PPE using a manikin with a motion device for exposure to the chamber with biocidal agent (sodium hypochlorite) for 10 and 30s. In 96.93% of the experimental conditions analyzed, the percentage reduction was >99% (the number of viable cells found on the surface ranged from 4.3x106 to <10 CFU/mL). The samples of E. faecalis collected from the glove showed the lowest percentages reduction, with 86.000 and 86.500% for exposure times of 10 and 30 s, respectively. The log10 reduction values varied between 0.85 log10 (E. faecalis at 30 s in glove surface) and 9.69 log10 (E. coli at 10 and 30 s in lab coat surface). In general, E. coli, S. aureus, C. freundii, P. mirabilis, C. albicans and C. parapsilosis showed susceptibility to the biocidal agent under the tested conditions, with >99% reduction after 10 and 30s, while E. faecalis and P. aeruginosa showed a lower susceptibility. The 30s exposure time was more effective for the inactivation of the tested microorganisms. The results show that the spray disinfection technology has the potential for instant decontamination of PPE, which can contribute to an additional barrier for infection control of healthcare workers in the hospital environment.

References

  1. Int J Environ Res Public Health. 2019 Nov 27;16(23): [PMID: 31783593]
  2. BMC Res Notes. 2015 Oct 09;8:551 [PMID: 26452549]
  3. Public Health. 2020 Aug;185:1-2 [PMID: 32502747]
  4. Environ Monit Assess. 2017 Jul;189(7):342 [PMID: 28623574]
  5. PLoS One. 2014 Sep 26;9(9):e108598 [PMID: 25259528]
  6. J Forensic Sci. 2006 Jul;51(4):827-31 [PMID: 16882227]
  7. Vox Sang. 2020 Aug;115(6):495-501 [PMID: 32311760]
  8. Pulmonology. 2020 Jul - Aug;26(4):241-244 [PMID: 32371054]
  9. Sci Total Environ. 2020 Dec 20;749:141652 [PMID: 32822917]
  10. Epidemiol Infect. 1989 Jun;102(3):493-505 [PMID: 2737256]
  11. JAMA. 2020 Apr 21;323(15):1439-1440 [PMID: 32163102]
  12. Infect Control Hosp Epidemiol. 2019 Jul;40(7):761-766 [PMID: 31172904]
  13. J Endod. 2018 Feb;44(2):269-273 [PMID: 29208399]
  14. Anaesthesia. 2020 Aug;75(8):989-992 [PMID: 32397005]
  15. Rev Chilena Infectol. 2017 Apr;34(2):156-174 [PMID: 28632831]
  16. ACS Infect Dis. 2020 Jul 10;6(7):1553-1557 [PMID: 32412231]
  17. Antimicrob Resist Infect Control. 2018 Dec 17;7:154 [PMID: 30568790]
  18. Eur J Paediatr Dent. 2019 Mar;20(1):73-78 [PMID: 30919649]
  19. J Glob Antimicrob Resist. 2019 Jun;17:316-320 [PMID: 30684653]
  20. Public Health. 2020 Jun;183:48-49 [PMID: 32422441]
  21. BMC Infect Dis. 2017 Oct 10;17(1):672 [PMID: 29017457]
  22. Emerg Infect Dis. 2020 Jul;26(7):1592-1595 [PMID: 32284092]
  23. Sci Rep. 2020 Sep 17;10(1):15247 [PMID: 32943689]
  24. Int J Environ Res Public Health. 2019 May 29;16(11): [PMID: 31146343]
  25. Front Microbiol. 2016 Jul 12;7:1070 [PMID: 27462306]
  26. J Med Virol. 2020 Apr;92(4):401-402 [PMID: 31950516]
  27. J Community Health. 2020 Aug;45(4):675-683 [PMID: 32440724]
  28. Emerg Infect Dis. 2020 Sep;26(9):2087-2096 [PMID: 32818393]
  29. J Histotechnol. 2020 Jun;43(2):102-104 [PMID: 32116147]
  30. ACS Nano. 2020 Oct 27;14(10):12313-12340 [PMID: 32866368]
  31. medRxiv. 2020 Jul 09;: [PMID: 32676621]
  32. Nature. 2020 Jun;582(7813):557-560 [PMID: 32340022]
  33. J Hosp Infect. 2018 Nov;100(3):e40-e46 [PMID: 30026008]
  34. J Appl Microbiol. 2000 Oct;89(4):663-7 [PMID: 11054171]
  35. BMC Infect Dis. 2019 Jan 31;19(1):101 [PMID: 30704406]
  36. BMJ Glob Health. 2020 May;5(5): [PMID: 32371574]
  37. Antimicrob Resist Infect Control. 2018 Dec 22;7:157 [PMID: 30607244]
  38. J Antimicrob Chemother. 2005 Apr;55(4):475-82 [PMID: 15761074]
  39. Antimicrob Agents Chemother. 2013 May;57(5):2417-21 [PMID: 23478969]
  40. Occup Med (Lond). 2020 Jul 17;70(5):330-334 [PMID: 32372076]
  41. Rev Esc Enferm USP. 2015 Aug;49(4):681-8 [PMID: 26353107]
  42. J Infect Public Health. 2020 May;13(5):730-736 [PMID: 32005617]
  43. Can J Anaesth. 2020 Jul;67(7):900-901 [PMID: 32291630]
  44. Ont Health Technol Assess Ser. 2018 Feb 07;18(1):1-73 [PMID: 29487629]
  45. J Contemp Dent Pract. 2018 Jan 1;19(1):113-116 [PMID: 29358546]
  46. Microb Pathog. 2018 Apr;117:128-138 [PMID: 29454824]
  47. Environ Pollut. 2020 Jul;262:114665 [PMID: 32443202]
  48. Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):6221-6225 [PMID: 30858309]
  49. J Hosp Infect. 2020 Mar;104(3):246-251 [PMID: 32035997]
  50. PLoS One. 2017 Oct 16;12(10):e0186375 [PMID: 29036196]
  51. Am J Infect Control. 2020 Aug;48(8):951-954 [PMID: 32522608]
  52. Respir Res. 2020 Jul 28;21(1):198 [PMID: 32723327]
  53. Eur Heart J. 2020 May 14;41(19):1786-1787 [PMID: 32282025]
  54. Am J Infect Control. 2017 Aug 1;45(8):e69-e73 [PMID: 28571980]
  55. Sci Rep. 2020 Nov 11;10(1):19589 [PMID: 33177563]
  56. Pathog Immun. 2019 Oct 28;4(2):260-270 [PMID: 31768483]
  57. Gut Pathog. 2020 Jun 19;12:29 [PMID: 32572338]
  58. JAMA Netw Open. 2020 May 1;3(5):e209666 [PMID: 32437575]
  59. J Natl Compr Canc Netw. 2020 Apr 15;:1-6 [PMID: 32294617]
  60. Knee Surg Sports Traumatol Arthrosc. 2020 Dec;28(12):3912-3918 [PMID: 32034427]
  61. PLoS One. 2019 Aug 22;14(8):e0221033 [PMID: 31437188]
  62. Am J Infect Control. 2016 Jun 1;44(6):714-5 [PMID: 26905789]
  63. Infect Control Hosp Epidemiol. 2017 Oct;38(10):1240-1243 [PMID: 28793937]
  64. BMC Anesthesiol. 2019 Aug 31;19(1):168 [PMID: 31470798]
  65. Biocontrol Sci. 2019;24(1):57-65 [PMID: 30880314]
  66. N Engl J Med. 2020 Feb 20;382(8):692-694 [PMID: 31978293]
  67. J Med Virol. 2020 Sep;92(9):1567-1571 [PMID: 32232986]
  68. J Burn Care Res. 2018 Apr 20;39(3):394-401 [PMID: 28661987]
  69. Clin Microbiol Rev. 2019 Feb 27;32(2): [PMID: 30814115]
  70. J Biomed Mater Res B Appl Biomater. 2018 Apr;106(3):945-953 [PMID: 28440891]
  71. Clin Toxicol (Phila). 2019 May;57(5):303-311 [PMID: 30689457]
  72. J Food Sci. 2018 May;83(5):1326-1332 [PMID: 29668034]
  73. J Clin Virol. 2020 Jul;128:104397 [PMID: 32388472]
  74. Curr Opin Infect Dis. 2016 Aug;29(4):424-31 [PMID: 27257798]
  75. Biocontrol Sci. 2006 Dec;11(4):147-57 [PMID: 17190269]
  76. PLoS One. 2012;7(4):e35797 [PMID: 22563403]
  77. PLoS One. 2017 Feb 23;12(2):e0172734 [PMID: 28231311]
  78. Glob Public Health. 2020 Sep;15(9):1380-1395 [PMID: 32379008]
  79. J Hosp Infect. 2019 Dec;103(4):435-440 [PMID: 31449920]
  80. Int J Environ Res Public Health. 2020 Mar 22;17(6): [PMID: 32235764]
  81. J Clin Virol. 2020 Jul;128:104437 [PMID: 32434708]
  82. Food Microbiol. 2016 Dec;60:160-4 [PMID: 27554158]
  83. J Hosp Infect. 2020 May;105(1):100-101 [PMID: 32147406]
  84. Am J Infect Control. 2020 Jan;48(1):46-51 [PMID: 31358421]
  85. Am J Infect Control. 2018 Nov;46(11):1254-1261 [PMID: 29803593]
  86. N Engl J Med. 2020 Mar 5;382(10):970-971 [PMID: 32003551]
  87. F1000Res. 2020 Jul 3;9:674 [PMID: 33123349]
  88. Health Secur. 2019 May/Jun;17(3):200-212 [PMID: 31173501]
  89. Int J Environ Res Public Health. 2020 Sep 29;17(19): [PMID: 33003634]

MeSH Term

Bacteria
Bacterial Infections
COVID-19
Decontamination
Humans
Infection Control
Infectious Disease Transmission, Patient-to-Professional
Protective Clothing
Respiratory Protective Devices
SARS-CoV-2

Word Cloud

Created with Highcharts 10.0.0EPPEexposuresurface10reductionmicroorganismstechnologyinstantdecontaminationglove30sfaecalisshowed30slog10Cpersonalprotectiveequipmenteffectivehealthcareworkersspraydisinfectionchamberdevelopedpreviouslycontaminatedtimeslabcoatbiocidalagentconditions>99%86coliPsusceptibilitytesteduseconsideredwayavoidcontaminationdifferentincludingSARS-CoV-2efficacysurfacesevaluatedtwoSeventestpreparedinoculatedseventypesrespiratormaskfaceshieldshoecapsafetyglassestestsperformedusingmanikinmotiondevicesodiumhypochlorite9693%experimentalanalyzedpercentagenumberviablecellsfoundranged43x106<10CFU/mLsamplescollectedlowestpercentages000500%respectivelyvaluesvaried085969generalSaureusfreundiimirabilisalbicansparapsilosisaeruginosalowertimeinactivationresultsshowpotentialcancontributeadditionalbarrierinfectioncontrolhospitalenvironmentPotentialapplicationnoveldoffingstep

Similar Articles

Cited By