Chronic heat stress delays immune system development and alters serotonin signaling in pre-weaned dairy calves.

Marcela G Marrero, Bethany Dado-Senn, Sena L Field, Guan Yang, John P Driver, Jimena Laporta
Author Information
  1. Marcela G Marrero: Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America.
  2. Bethany Dado-Senn: Department of Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin, United States of America.
  3. Sena L Field: Department of Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin, United States of America.
  4. Guan Yang: Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America.
  5. John P Driver: Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America.
  6. Jimena Laporta: Department of Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin, United States of America. ORCID

Abstract

Exposure to heat stress can alter the development and immune system function in dairy calves. serotonin is an immunomodulatory biogenic amine that functions as a neurotransmitter and as a stress-response mediator. Our objectives were to characterize the patterns of serum serotonin concentrations and the pattern of serotonin-related genes expressed by immune cells of calves exposed to chronic heat stress or heat stress abatement during early life, and to explore whether these might relate to immune system development. Dairy calves were exposed to chronic heat stress (HS; n = 6) or heat stress abatement (cooling, CL; n = 6) across the prenatal (late gestation, last 46 d) and postnatal (from birth to weaning, 56 d) developmental windows. Blood samples were collected to harvest serum (weekly, from d 1 to 49), to isolate of circulating leukocyte mRNA (at 1, 21 and 42 d of age) and characterize immune cell populations by flow cytometry (at 21 and 47 d of age). calves exposed to chronic heat stress pre- and postnatally had lower red blood cell counts and lower circulating serotonin, immunoglobulin G, and B-lymphocytes compared to CL calves. Circulating blood leukocyte mRNA expression of serotonin receptors -1A, -1F, -4 and -5 was greater, while heat shock protein 70 and immune-related genes (i.e., TBX21, TLR4, and TGFβ) were lower in HS relative to CL calves. Peripheral blood leukocytes from all calves secreted serotonin and interleukin-6 after in-vitro lipopolysaccharide stimulation. However, the HS calves produced more serotonin and less interleukin-6 than CL calves when activated in-vitro. Together, our data suggest that providing heat stress abatement to dairy calves across prenatal and postnatal developmental windows might modulate the serotonin synthesis pathway in ways that may benefit humoral immunity against microbial pathogens.

References

  1. Front Cardiovasc Med. 2017 Jul 20;4:48 [PMID: 28775986]
  2. Res Vet Sci. 2009 Apr;86(2):235-40 [PMID: 18774579]
  3. Int Immunol. 2003 Feb;15(2):233-40 [PMID: 12578853]
  4. J Dairy Sci. 2012 Dec;95(12):7128-36 [PMID: 23021751]
  5. Neurosci Res. 2015 Dec;101:15-23 [PMID: 26163770]
  6. Blood. 2007 Apr 15;109(8):3139-46 [PMID: 17158224]
  7. J Neurosci. 2017 Jun 28;37(26):6214-6223 [PMID: 28546314]
  8. Annu Rev Physiol. 1999;61:243-82 [PMID: 10099689]
  9. Cell. 1998 Feb 6;92(3):351-66 [PMID: 9476895]
  10. Behav Brain Res. 2015 Jan 15;277:58-67 [PMID: 25108244]
  11. Vet Immunol Immunopathol. 2006 Sep 15;113(1-2):53-63 [PMID: 16772096]
  12. Blood. 2013 Feb 7;121(6):1008-15 [PMID: 23243271]
  13. Curr Opin Pharmacol. 2011 Feb;11(1):29-33 [PMID: 21393060]
  14. Animal. 2010 Jul;4(7):1167-83 [PMID: 22444615]
  15. Mediators Inflamm. 2014;2014:283126 [PMID: 25530682]
  16. J Immunol. 1994 Jul 15;153(2):489-98 [PMID: 8021490]
  17. Front Cell Neurosci. 2017 Sep 20;11:277 [PMID: 28979187]
  18. Int Immunol. 2005 May;17(5):599-606 [PMID: 15802305]
  19. Int Immunopharmacol. 2011 Jan;11(1):67-73 [PMID: 20971187]
  20. Domest Anim Endocrinol. 2019 Oct;69:42-50 [PMID: 31280025]
  21. Microbiol Immunol. 2010 May;54(5):299-307 [PMID: 20536727]
  22. J Dairy Sci. 2015 Nov;98(11):7771-83 [PMID: 26298746]
  23. J Immunol. 2004 May 15;172(10):6011-9 [PMID: 15128784]
  24. Neuroscience. 1992 Sep;50(2):445-54 [PMID: 1436498]
  25. Endocrinology. 2010 Oct;151(10):4776-86 [PMID: 20685881]
  26. J Invest Dermatol. 2007 Aug;127(8):1947-55 [PMID: 17429435]
  27. Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13141-6 [PMID: 21788492]
  28. Acta Physiol (Oxf). 2015 Mar;213(3):561-74 [PMID: 25439045]
  29. Curr Biol. 2015 Jan 19;25(2):163-174 [PMID: 25557666]
  30. Annu Rev Biochem. 2011;80:1089-115 [PMID: 21417720]
  31. J Dairy Sci. 1982 Aug;65(8):1514-28 [PMID: 7142529]
  32. Vet Res. 2003 Jan-Feb;34(1):57-70 [PMID: 12588684]
  33. J Dairy Sci. 2012 Jan;95(1):221-39 [PMID: 22192201]
  34. Brain Res Bull. 2001 Nov 15;56(5):441-51 [PMID: 11750789]
  35. Blood. 2006 Feb 1;107(3):1010-7 [PMID: 16223770]
  36. Basic Clin Pharmacol Toxicol. 2010 Oct;107(4):830-41 [PMID: 20456331]
  37. Front Vet Sci. 2020 Mar 06;7:116 [PMID: 32211430]
  38. Stress. 2015;18(6):668-76 [PMID: 26414686]
  39. J Dairy Sci. 2010 Jan;93(1):148-52 [PMID: 20059913]
  40. Infect Immun. 2003 Jan;71(1):317-26 [PMID: 12496181]
  41. PLoS One. 2013 Dec 17;8(12):e83010 [PMID: 24358245]
  42. Psychiatry Res. 2005 Apr 30;134(3):251-8 [PMID: 15892984]
  43. Cytokine. 1996 Feb;8(2):152-60 [PMID: 8777274]
  44. Comp Biochem Physiol A Mol Integr Physiol. 2002 Mar;131(3):475-83 [PMID: 11867273]
  45. Neurosci Lett. 2011 Feb 18;490(1):68-71 [PMID: 21172407]
  46. J Anim Sci. 2006 Apr;84 Suppl:E1-13 [PMID: 16582080]
  47. Curr Biol. 2015 Jan 19;25(2):R71-R73 [PMID: 25602307]
  48. Neuropsychopharmacology. 1999 Aug;21(2 Suppl):28S-32S [PMID: 10432486]
  49. Dokl Biol Sci. 2009 Jul-Aug;427:319-21 [PMID: 19760871]
  50. Brain Behav Immun. 2017 Nov;66:372-381 [PMID: 28723348]
  51. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  52. Neuroscience. 2003;120(3):649-58 [PMID: 12895506]
  53. Vet Clin North Am Food Anim Pract. 2008 Mar;24(1):19-39 [PMID: 18299030]
  54. J Dairy Sci. 2020 May;103(5):4822-4837 [PMID: 32113780]
  55. Cell Immunol. 1995 Jun;163(1):1-9 [PMID: 7758118]
  56. Comp Biochem Physiol C Comp Pharmacol. 1982;73(2):313-8 [PMID: 6184194]
  57. PLoS One. 2013 Oct 02;8(10):e75426 [PMID: 24098382]
  58. Annu Rev Med. 2009;60:355-66 [PMID: 19630576]
  59. J Dairy Sci. 2014 Oct;97(10):6426-39 [PMID: 25108869]
  60. Sci Rep. 2020 Jun 16;10(1):9712 [PMID: 32546841]

MeSH Term

Animals
Cattle
Cattle Diseases
Female
Heat Stress Disorders
Heat-Shock Proteins
Lymphocytes
Pregnancy
Prenatal Exposure Delayed Effects
Receptors, Serotonin

Chemicals

Heat-Shock Proteins
Receptors, Serotonin

Word Cloud

Created with Highcharts 10.0.0calvesheatstressserotoninimmunedCLdevelopmentsystemdairyexposedchronicabatementHSlowerbloodcharacterizeserumgenesmightn=6acrossprenatalpostnataldevelopmentalwindows1circulatingleukocytemRNA21agecellinterleukin-6in-vitroExposurecanalterfunctionSerotoninimmunomodulatorybiogenicaminefunctionsneurotransmitterstress-responsemediatorobjectivespatternsconcentrationspatternserotonin-relatedexpressedcellsearlylifeexplorewhetherrelateDairycoolinglategestationlast46birthweaning56Bloodsamplescollectedharvestweekly49isolate42populationsflowcytometry47Calvespre-postnatallyredcountsimmunoglobulinGB-lymphocytescomparedCirculatingexpressionreceptors-1A-1F-4-5greatershockprotein70immune-relatedieTBX21TLR4TGFβrelativePeripheralleukocytessecretedlipopolysaccharidestimulationHoweverproducedlessactivatedTogetherdatasuggestprovidingmodulatesynthesispathwaywaysmaybenefithumoralimmunitymicrobialpathogensChronicdelaysalterssignalingpre-weaned

Similar Articles

Cited By (12)