Discrete Helmholtz model: a single layer of correlated counter-ions. Metal oxides and silica interfaces, ion-exchange and biological membranes.

Grégoire C Gschwend, Hubert H Girault
Author Information
  1. Grégoire C Gschwend: Laboratoire d'Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL) Rue de l'Industrie 17 CH-1951 Sion Switzerland hubert.girault@epfl.ch. ORCID
  2. Hubert H Girault: Laboratoire d'Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL) Rue de l'Industrie 17 CH-1951 Sion Switzerland hubert.girault@epfl.ch. ORCID

Abstract

The mechanism by which interfaces in solution can be polarised depends on the nature of the charge carriers. In the case of a conductor, the charge carriers are electrons and the polarisation is homogeneous in the plane of the electrode. In the case of an insulator covered by ionic moieties, the polarisation is inhomogeneous and discrete in the plane of the interface. Despite these fundamental differences, these systems are usually treated in the same theoretical framework that relies on the Poisson-Boltzmann equation for the solution side. In this perspective, we show that interfaces polarised by discrete charge distributions are rather ubiquitous and that their associated potential drop significantly differs from those of conductor-electrolyte interfaces. We show that these configurations, spanning liquid-liquid interfaces, charged silica-water interfaces, metal oxide interfaces, supercapacitors, ion-exchange membranes and even biological membranes can be uniformly treated under a common "Discrete Helmholtz" model where the discrete charges are compensated by a single layer of correlated counter-ions, thereby generating a sharp potential drop at the interface.

References

  1. Biochim Biophys Acta. 2012 Mar;1818(3):609-16 [PMID: 22155683]
  2. Nat Chem. 2016 Nov 22;8(12):1091-1098 [PMID: 27874869]
  3. Science. 2014 Mar 14;343(6176):1210-1 [PMID: 24626920]
  4. Nature. 2016 Sep 15;537(7620):382-386 [PMID: 27487220]
  5. Adv Colloid Interface Sci. 2016 Aug;234:108-131 [PMID: 27217082]
  6. J Phys Chem B. 2008 Feb 7;112(5):1397-408 [PMID: 18193856]
  7. Eur Biophys J. 2018 Dec;47(8):869-879 [PMID: 30203188]
  8. Langmuir. 2010 Dec 21;26(24):18951-8 [PMID: 21114263]
  9. Biophys J. 2008 May 1;94(9):3565-76 [PMID: 18222999]
  10. Front Cell Dev Biol. 2017 Jan 10;4:155 [PMID: 28119914]
  11. Membranes (Basel). 2016 Jan 26;6(1): [PMID: 26821050]
  12. ACS Cent Sci. 2020 Feb 26;6(2):304-311 [PMID: 32123749]
  13. Eur Biophys J. 2018 Dec;47(8):865-867 [PMID: 30291392]
  14. J Biol Phys. 2017 Sep;43(3):319-340 [PMID: 28560475]
  15. Angew Chem Int Ed Engl. 2016 Mar 7;55(11):3790-4 [PMID: 26880184]
  16. Chem Sci. 2020 Mar 24;11(15):3914-3922 [PMID: 34122861]
  17. Nature. 1965 Sep 4;207(5001):1045-7 [PMID: 5866307]
  18. Nat Rev Neurosci. 2017 Sep 19;18(10):598-612 [PMID: 28924257]
  19. J Chem Theory Comput. 2009 Aug 11;5(8):2125-34 [PMID: 26613152]
  20. Biophys Rev. 2019 Jun;11(3):483-490 [PMID: 31115866]
  21. Chem Rev. 1947 Dec;41(3):441-501 [PMID: 18895519]
  22. Chem Sci. 2019 May 9;10(22):5656-5666 [PMID: 31293750]
  23. Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15440-4 [PMID: 17032760]
  24. Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jun;83(6 Pt 1):061507 [PMID: 21797372]
  25. J Electroanal Chem Interfacial Electrochem. 1987 Dec 1;18(1-3):29-36 [PMID: 25484449]
  26. IEEE Trans Biomed Eng. 1970 Jan;17(1):70-1 [PMID: 5441220]
  27. Biophys J. 2003 Sep;85(3):1647-55 [PMID: 12944279]
  28. J Am Chem Soc. 2006 Nov 22;128(46):15019-25 [PMID: 17105314]
  29. Biochim Biophys Acta. 2016 Apr;1858(4):706-14 [PMID: 26802251]
  30. J Phys Chem B. 2015 Nov 5;119(44):14168-79 [PMID: 26451495]

Word Cloud

Created with Highcharts 10.0.0interfaceschargediscretemembranessolutioncanpolarisedcarrierscasepolarisationplaneinterfacetreatedshowpotentialdropion-exchangebiologicalsinglelayercorrelatedcounter-ionsmechanismdependsnatureconductorelectronshomogeneouselectrodeinsulatorcoveredionicmoietiesinhomogeneousDespitefundamentaldifferencessystemsusuallytheoreticalframeworkreliesPoisson-Boltzmannequationsideperspectivedistributionsratherubiquitousassociatedsignificantlydiffersconductor-electrolyteconfigurationsspanningliquid-liquidchargedsilica-watermetaloxidesupercapacitorsevenuniformlycommon"DiscreteHelmholtz"modelchargescompensatedtherebygeneratingsharpDiscreteHelmholtzmodel:Metaloxidessilica

Similar Articles

Cited By