Large bone defects remain a clinical challenge because they do not heal spontaneously. 3-D printed scaffolds are a promising treatment option for such critical defects. Recent scaffold design strategies have made use of computer modelling techniques to optimize scaffold design. In particular, scaffold geometries have been optimized to avoid mechanical failure and recently also to provide a distinct mechanical stimulation to cells within the scaffold pores. This way, mechanical strain levels are optimized to favour the bone tissue formation. However, bone regeneration is a highly dynamic process where the mechanical conditions immediately after surgery might not ensure optimal regeneration throughout healing. Here, we investigated in silico whether scaffolds presenting optimal mechanical conditions for bone regeneration immediately after surgery also present an optimal design for the full regeneration process. A computer framework, combining an automatic parametric scaffold design generation with a mechano-biological bone regeneration model, was developed to predict the level of regenerated bone volume for a large range of scaffold designs and to compare it with the scaffold pore volume fraction under favourable mechanical stimuli immediately after surgery. We found that many scaffold designs could be considered as highly beneficial for bone healing immediately after surgery; however, most of them did not show optimal bone formation in later regenerative phases. This study allowed to gain a more thorough understanding of the effect of scaffold geometry changes on bone regeneration and how to maximize regenerated bone volume in the long term.
Sci Transl Med. 2012 Jul 4;4(141):141ra93
[PMID:
22764209]
Med Eng Phys. 2010 Sep;32(7):775-82
[PMID:
20620093]
Ann Biomed Eng. 2009 Jan;37(1):129-45
[PMID:
19011968]
Micromachines (Basel). 2020 Mar 06;11(3):
[PMID:
32155781]
Biomaterials. 2007 Dec;28(36):5544-54
[PMID:
17897712]
Mater Sci Eng C Mater Biol Appl. 2018 Feb 1;83:51-66
[PMID:
29208288]
Curr Osteoporos Rep. 2018 Apr;16(2):155-168
[PMID:
29536393]
J Theor Biol. 2008 May 21;252(2):230-46
[PMID:
18353374]
Biofabrication. 2017 Feb 21;9(1):015023
[PMID:
28222045]
Med Eng Phys. 2014 Apr;36(4):448-57
[PMID:
24636449]
ACS Biomater Sci Eng. 2020 Sep 14;6(9):5181-5190
[PMID:
33455268]
Nat Commun. 2018 Oct 25;9(1):4430
[PMID:
30361486]
Acta Biomater. 2016 May;36:296-309
[PMID:
27000553]
J Biomech. 2014 Apr 11;47(6):1514-9
[PMID:
24607006]
Clin Orthop Relat Res. 1998 Oct;(355 Suppl):S41-55
[PMID:
9917625]
ACS Biomater Sci Eng. 2019 Oct 14;5(10):5392-5411
[PMID:
33464060]
Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2095-9
[PMID:
8134355]
Animals (Basel). 2020 Aug 11;10(8):
[PMID:
32796533]
Biomaterials. 2002 Oct;23(20):4095-103
[PMID:
12182311]
Biomaterials. 2019 Feb;194:183-194
[PMID:
30611115]
Materials (Basel). 2020 Feb 01;13(3):
[PMID:
32024158]
J Tissue Eng. 2019 Feb 28;10:2041731419832133
[PMID:
30834102]
J Biomech. 1997 Jun;30(6):539-48
[PMID:
9165386]
Injury. 2011 Sep;42 Suppl 2:S3-15
[PMID:
21704997]
Biomaterials. 2011 Aug;32(22):5003-14
[PMID:
21529933]
J Orthop Res. 2009 Dec;27(12):1659-66
[PMID:
19514073]
Acta Biomater. 2020 Jan 1;101:117-127
[PMID:
31669697]
J Biomech. 2010 Jun 18;43(9):1738-44
[PMID:
20227080]
Tissue Eng. 2006 Sep;12(9):2509-19
[PMID:
16995784]
J Biomech. 2015 Sep 18;48(12):3274-82
[PMID:
26162547]
J Mech Behav Biomed Mater. 2014 Sep;37:56-68
[PMID:
24942627]
J Biomech. 1999 Mar;32(3):255-66
[PMID:
10093025]
Front Bioeng Biotechnol. 2020 Nov 11;8:585799
[PMID:
33262976]
Biomater Sci. 2015 Feb;3(2):231-45
[PMID:
26218114]
PLoS One. 2016 Jan 15;11(1):e0146935
[PMID:
26771746]
J Biomed Mater Res A. 2009 Sep 1;90(3):906-19
[PMID:
18646204]
J Bone Miner Res. 2019 Oct;34(10):1923-1937
[PMID:
31121071]
Calcif Tissue Int. 2016 Aug;99(2):209-23
[PMID:
27075029]
Int J Biol Sci. 2016 Jan 01;12(1):1-17
[PMID:
26722213]
J Biomech. 2002 Sep;35(9):1163-71
[PMID:
12163306]
Sci Rep. 2019 Jun 24;9(1):9170
[PMID:
31235704]
J Biomech. 2011 Apr 29;44(7):1237-45
[PMID:
21419412]
Sci Rep. 2016 Sep 26;6:34072
[PMID:
27667204]
Sci Transl Med. 2018 Jan 10;10(423):
[PMID:
29321260]
Int J Oral Maxillofac Surg. 2014 Apr;43(4):506-13
[PMID:
24183512]
J Biomech. 2021 Mar 5;117:110233
[PMID:
33601086]