Algorithmic jingle jungle: A comparison of implementations of principal axis factoring and promax rotation in R and SPSS.

Silvia Grieder, Markus D Steiner
Author Information
  1. Silvia Grieder: Division of Developmental and Personality Psychology, Department of Psychology, University of Basel, Missionsstrasse 62, 4055, Basel, Switzerland. silvia.grieder@unibas.ch. ORCID
  2. Markus D Steiner: Center for Cognitive and Decision Sciences, Department of Psychology, University of Basel, Basel, Switzerland. ORCID

Abstract

A statistical procedure is assumed to produce comparable results across programs. Using the case of an exploratory factor analysis procedure-principal axis factoring (PAF) and promax rotation-we show that this assumption is not always justified. Procedures with equal names are sometimes implemented differently across programs: a jingle fallacy. Focusing on two popular statistical analysis programs, we indeed discovered a jingle jungle for the above procedure: Both PAF and promax rotation are implemented differently in the psych R package and in SPSS. Based on analyses with 247 real and 216,000 simulated data sets implementing 108 different data structures, we show that these differences in implementations can result in fairly different factor solutions for a variety of different data structures. Differences in the solutions for real data sets ranged from negligible to very large, with 42% displaying at least one different indicator-to-factor correspondence. A simulation study revealed systematic differences in accuracies between different implementations, and large variation between data structures, with small numbers of indicators per factor, high factor intercorrelations, and weak factors resulting in the lowest accuracies. Moreover, although there was no single combination of settings that was superior for all data structures, we identified implementations of PAF and promax that maximize performance on average. We recommend researchers to use these implementations as best way through the jungle, discuss model averaging as a potential alternative, and highlight the importance of adhering to best practices of scale construction.

Keywords

References

  1. Behav Res Methods. 2023 Sep;55(6):2813-2837 [PMID: 35953660]
  2. Multivariate Behav Res. 2003 Jan 1;38(1):25-56 [PMID: 26771123]
  3. Trends Cogn Sci. 2018 Nov;22(11):953-956 [PMID: 30041865]
  4. Behav Res Methods. 2009 Nov;41(4):1038-52 [PMID: 19897812]
  5. Multivariate Behav Res. 2013 Jan;48(1):28-56 [PMID: 26789208]
  6. Psychometrika. 1966 Sep;31(3):313-23 [PMID: 5221128]
  7. Psychol Methods. 2019 Aug;24(4):468-491 [PMID: 30667242]
  8. Science. 2015 Aug 28;349(6251):aac4716 [PMID: 26315443]
  9. Behav Brain Sci. 2020 Dec 21;45:e1 [PMID: 33342451]
  10. Res Social Adm Pharm. 2012 Mar-Apr;8(2):166-71 [PMID: 21454136]
  11. Behav Res Methods Instrum Comput. 2000 Aug;32(3):396-402 [PMID: 11029811]
  12. Psychol Methods. 2017 Sep;22(3):450-466 [PMID: 27031883]
  13. Science. 1928 Jul 13;68(1750):38 [PMID: 17833513]
  14. Nat Hum Behav. 2017 Jan 10;1:0021 [PMID: 33954258]
  15. Psychometrika. 1965 Jun;30:179-85 [PMID: 14306381]
  16. Multivariate Behav Res. 2011 Apr 11;46(2):340-64 [PMID: 26741331]
  17. Multivariate Behav Res. 2003 Jan 1;38(1):113-39 [PMID: 26771126]
  18. Assessment. 2020 Dec;27(8):1853-1869 [PMID: 31023061]
  19. Psychol Bull. 1991 May;109(3):512-9 [PMID: 2062982]
  20. Multivariate Behav Res. 1998 Apr 1;33(2):181-220 [PMID: 26771883]

MeSH Term

Computer Simulation
Factor Analysis, Statistical
Humans
Psychometrics

Word Cloud

Created with Highcharts 10.0.0datafactordifferentimplementationspromaxstructuresanalysisaxisfactoringPAFjinglerotationstatisticalacrossprogramsshowimplementeddifferentlyjungleRSPSSrealsetsdifferencessolutionslargeaccuraciesbestcomparisonprocedureassumedproducecomparableresultsUsingcaseexploratoryprocedure-principalrotation-weassumptionalwaysjustifiedProceduresequalnamessometimesprograms:fallacyFocusingtwopopularindeeddiscoveredprocedure:psychpackageBasedanalyses247216000simulatedimplementing108canresultfairlyvarietyDifferencesrangednegligible42%displayingleastoneindicator-to-factorcorrespondencesimulationstudyrevealedsystematicvariationsmallnumbersindicatorsperhighintercorrelationsweakfactorsresultinglowestMoreoveralthoughsinglecombinationsettingssuperioridentifiedmaximizeperformanceaveragerecommendresearchersusewaydiscussmodelaveragingpotentialalternativehighlightimportanceadheringpracticesscaleconstructionAlgorithmicjungle:principalExploratoryPrincipalPromaxSoftware

Similar Articles

Cited By