Prebiotics and alternative poultry production.

Steven C Ricke
Author Information
  1. Steven C Ricke: Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI. Electronic address: sricke@wisc.edu.

Abstract

Alternative poultry production systems continue to expand as markets for organic and naturally produced poultry meat and egg products increase. However, these production systems represent challenges associated with variable environmental conditions and exposure to foodborne pathogens. Consequently, there is a need to introduce feed additives that can support bird health and performance. There are several candidate feed additives with potential applications in alternative poultry production systems. Prebiotic compounds selectively stimulate the growth of beneficial gastrointestinal microorganisms leading to improved health of the host and limiting the establishment of foodborne pathogens. The shift in the gastrointestinal microbiota and modulation of fermentation can inhibit the establishment of foodborne pathogens such as Campylobacter and Salmonella. Both current and potential applications of prebiotics in alternative poultry production systems will be discussed in this review. Different sources and types of prebiotics that could be developed for alternative poultry production will also be explored.

Keywords

References

  1. Front Vet Sci. 2019 May 24;6:157 [PMID: 31179291]
  2. Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):481-6 [PMID: 12448744]
  3. Poult Sci. 2003 Apr;82(4):627-31 [PMID: 12710484]
  4. Front Nutr. 2018 Apr 12;5:23 [PMID: 29707542]
  5. Front Vet Sci. 2015 Sep 02;2:28 [PMID: 26664957]
  6. J Nutr. 1995 Jun;125(6):1401-12 [PMID: 7782892]
  7. Avian Pathol. 2003 Apr;32(2):173-81 [PMID: 12745371]
  8. Poult Sci. 2003 Apr;82(4):603-11 [PMID: 12710480]
  9. Nat Rev Gastroenterol Hepatol. 2017 Aug;14(8):491-502 [PMID: 28611480]
  10. Benef Microbes. 2010 Nov;1(4):423-31 [PMID: 21831780]
  11. Poult Sci. 2018 Jul 1;97(7):2322-2338 [PMID: 29617899]
  12. J Altern Complement Med. 2018 Jul;24(7):656-665 [PMID: 29565634]
  13. Poult Sci. 2011 Jan;90(1):251-62 [PMID: 21177467]
  14. Front Microbiol. 2015 Nov 09;6:1266 [PMID: 26617600]
  15. Poult Sci. 2011 Nov;90(11):2663-9 [PMID: 22010256]
  16. Poult Sci. 2015 Jun;94(6):1419-30 [PMID: 25743421]
  17. Poult Sci. 2020 Feb;99(2):653-659 [PMID: 32029151]
  18. Animals (Basel). 2020 Mar 30;10(4): [PMID: 32235462]
  19. Poult Sci. 2012 Dec;91(12):3295-9 [PMID: 23155043]
  20. Poult Sci. 2020 Feb;99(2):670-677 [PMID: 32029153]
  21. Poult Sci. 2016 Mar;95(3):684-93 [PMID: 26740129]
  22. Poult Sci. 2020 May;99(5):2362-2374 [PMID: 32359571]
  23. PLoS One. 2017 Sep 22;12(9):e0185002 [PMID: 28937988]
  24. J Environ Qual. 2016 Mar;45(2):593-603 [PMID: 27065406]
  25. Poult Sci. 2012 Jun;91(6):1379-86 [PMID: 22582296]
  26. Can J Vet Res. 2011 Oct;75(4):298-307 [PMID: 22468028]
  27. J Environ Sci Health B. 2016;51(4):230-5 [PMID: 26786395]
  28. Animals (Basel). 2018 Nov 30;8(12): [PMID: 30513677]
  29. Front Vet Sci. 2018 Sep 06;5:216 [PMID: 30238011]
  30. Appl Environ Microbiol. 1999 May;65(5):1919-23 [PMID: 10223980]
  31. FEMS Microbiol Lett. 2015 Aug;362(15):fnv122 [PMID: 26208530]
  32. Appl Environ Microbiol. 2013 Jul;79(13):4106-14 [PMID: 23624481]
  33. Poult Sci. 2011 Jan;90(1):229-40 [PMID: 21177465]
  34. Poult Sci. 2003 Apr;82(4):632-9 [PMID: 12710485]
  35. Poult Sci. 2019 Feb 1;98(2):695-706 [PMID: 30247675]
  36. mSphere. 2019 Mar 27;4(2): [PMID: 30918057]
  37. Vet J. 2000 Mar;159(2):111-23 [PMID: 10712799]
  38. Poult Sci. 2018 Feb 1;97(2):607-619 [PMID: 29161444]
  39. Poult Sci. 2018 Oct 1;97(10):3494-3500 [PMID: 30007294]
  40. J Infect Dis. 1952 Jan-Feb;90(1):81-96 [PMID: 14888972]
  41. Front Vet Sci. 2018 Oct 30;5:245 [PMID: 30425993]
  42. Crit Rev Microbiol. 2018 May;44(3):290-303 [PMID: 28903617]
  43. Poult Sci. 2013 Feb;92(2):546-61 [PMID: 23300323]
  44. Poult Sci. 2017 Jun 1;96(6):1820-1830 [PMID: 28339946]
  45. Foodborne Pathog Dis. 2008 Dec;5(6):709-20 [PMID: 19025441]
  46. Poult Sci. 2011 Jan;90(1):278-94 [PMID: 21177469]
  47. Front Microbiol. 2019 Jan 31;10:91 [PMID: 30804900]
  48. Prev Vet Med. 2010 Apr 1;94(1-2):94-100 [PMID: 20031240]
  49. Avian Dis. 2015 Jun;59(2):291-302 [PMID: 26473681]
  50. Appl Environ Microbiol. 2017 Feb 15;83(5): [PMID: 28039133]
  51. Poult Sci. 2013 Nov;92(11):3060-6 [PMID: 24135612]
  52. Front Vet Sci. 2018 Aug 15;5:191 [PMID: 30159318]
  53. Vet Microbiol. 2016 Aug 30;192:67-72 [PMID: 27527766]
  54. Animals (Basel). 2020 Jan 08;10(1): [PMID: 31936291]
  55. Front Vet Sci. 2016 Aug 17;3:63 [PMID: 27583251]
  56. Front Microbiol. 2019 Jan 23;9:3280 [PMID: 30728816]
  57. Front Vet Sci. 2020 Jun 23;7:331 [PMID: 32656252]
  58. Poult Sci. 2015 Jun;94(6):1411-8 [PMID: 25717086]
  59. Poult Sci. 2018 Sep 1;97(9):3188-3206 [PMID: 29893913]
  60. Front Vet Sci. 2019 Jun 13;6:188 [PMID: 31249838]
  61. Front Vet Sci. 2017 Aug 11;4:125 [PMID: 29018807]
  62. BMC Vet Res. 2018 Dec 4;14(1):383 [PMID: 30514391]
  63. Avian Pathol. 2007 Jun;36(3):187-97 [PMID: 17497330]
  64. Clin Nutr. 2020 Feb;39(2):414-424 [PMID: 30904186]
  65. J Appl Microbiol. 2010 Dec;109(6):1957-66 [PMID: 20722876]
  66. PLoS One. 2016 Mar 18;11(3):e0151944 [PMID: 26992104]
  67. Poult Sci. 2003 Apr;82(4):640-7 [PMID: 12710486]
  68. Yale J Biol Med. 2018 Jun 28;91(2):151-159 [PMID: 29955220]
  69. Curr Opin Biotechnol. 2016 Feb;37:1-7 [PMID: 26431716]
  70. Poult Sci. 2018 Mar 1;97(3):812-819 [PMID: 29272538]
  71. Poult Sci. 2005 Apr;84(4):634-43 [PMID: 15844822]
  72. Poult Sci. 2018 Mar 1;97(3):1006-1021 [PMID: 29253263]
  73. Zoonoses Public Health. 2011 Aug;58(5):304-11 [PMID: 20875073]
  74. Poult Sci. 2013 Feb;92(2):502-25 [PMID: 23300320]
  75. Poult Sci. 2020 Jun;99(6):3179-3187 [PMID: 32475454]
  76. Annu Rev Food Sci Technol. 2012;3:203-25 [PMID: 22385165]
  77. Poult Sci. 2020 Feb;99(2):660-669 [PMID: 32029152]

MeSH Term

Animals
Chickens
Gastrointestinal Tract
Ovum
Poultry
Prebiotics

Chemicals

Prebiotics

Word Cloud

Created with Highcharts 10.0.0poultryproductionalternativesystemsfoodbornepathogensgastrointestinalprebioticsfeedadditivescanhealthpotentialapplicationsestablishmentwillAlternativecontinueexpandmarketsorganicnaturallyproducedmeateggproductsincreaseHoweverrepresentchallengesassociatedvariableenvironmentalconditionsexposureConsequentlyneedintroducesupportbirdperformanceseveralcandidatePrebioticcompoundsselectivelystimulategrowthbeneficialmicroorganismsleadingimprovedhostlimitingshiftmicrobiotamodulationfermentationinhibitCampylobacterSalmonellacurrentdiscussedreviewDifferentsourcestypesdevelopedalsoexploredPrebioticsfoodsafetytract

Similar Articles

Cited By