Nanowaveguide-illuminated fluorescence correlation spectroscopy for single molecule studies.

Joseph M Chandler, Huizhong Xu
Author Information
  1. Joseph M Chandler: Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, California 94132, USA.
  2. Huizhong Xu: Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, California 94132, USA. ORCID

Abstract

Fluorescence Correlation Spectroscopy (FCS) is a method of investigating concentration fluctuations of fluorescent particles typically in the nM range as a result of its femtoliter-sized sample volume. However, biological processes on cell membranes that involve molecules in the μM concentration range require sample volumes well below the conventional FCS limit as well as nanoscale confinement in the longitudinal direction. In this study, we show that an effective measurement volume down to the zeptoliter range can be achieved via the introduction of a nanowire waveguide, resulting in an illumination spot of about 50 nm in lateral dimensions and a longitudinal confinement of around 20 nm just above the waveguide exit surface. Using illumination profiles obtained from finite element method simulations of dielectric nanowaveguides, we perform Monte Carlo simulations of fluorescence fluctuations for two scenarios of fluorophore movement: fluorophores freely diffusing in the three-dimensional (3D) space above the nanowaveguide and fluorophores moving in a two-dimensional (2D) membrane situated directly above the nanowaveguide exit surface. We have developed analytical functions to fit the simulation results and found that an effective illumination size of about 150 zl and 4 × 10 m can be obtained for the 3D and 2D scenarios, respectively. Given the flat surface geometry and the deep-subwavelength confinement of its illumination spot, this nanowaveguide-illuminated fluorescence correlation spectroscopy technique may be well suited for studying the concentration and dynamics of densely distributed protein molecules on cell membranes.

References

  1. Biophys J. 2004 Aug;87(2):1268-78 [PMID: 15298929]
  2. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 May;91(5):052303 [PMID: 26066173]
  3. Annu Rev Biophys. 2012;41:269-93 [PMID: 22577821]
  4. Nat Rev Drug Discov. 2006 Dec;5(12):993-6 [PMID: 17139284]
  5. Phys Rev Lett. 2005 May 6;94(17):178104 [PMID: 15904340]
  6. Biophys J. 2005 Jan;88(1):L01-3 [PMID: 15531630]
  7. Biopolymers. 1974 Jan;13(1):29-61 [PMID: 4818131]
  8. Biophys J. 2001 Mar;80(3):1575-84 [PMID: 11222318]
  9. J Phys Chem B. 2006 Feb 2;110(4):1896-906 [PMID: 16471761]
  10. J Phys D Appl Phys. 2020 Apr 15;53(16):164003 [PMID: 33191951]
  11. Nat Commun. 2014 Nov 20;5:5412 [PMID: 25410140]
  12. Biophys J. 1981 Mar;33(3):435-54 [PMID: 7225515]
  13. Biophys J. 1999 Oct;77(4):2251-65 [PMID: 10512844]
  14. Nat Biotechnol. 2011 Aug 07;29(9):835-9 [PMID: 21822256]
  15. Biophys J. 2015 Feb 3;108(3):596-609 [PMID: 25650927]
  16. Science. 2003 Jan 31;299(5607):682-6 [PMID: 12560545]
  17. Annu Rev Biomed Eng. 2016 Jul 11;18:51-76 [PMID: 26863923]
  18. Anal Chem. 2007 Jun 15;79(12):4463-70 [PMID: 17489557]
  19. Traffic. 2009 Aug;10(8):962-71 [PMID: 19416480]
  20. J Phys Chem Lett. 2018 Jan 4;9(1):110-119 [PMID: 29240442]
  21. Methods Cell Biol. 2008;89:3-35 [PMID: 19118670]
  22. J Phys Chem B. 2014 Aug 14;118(32):9662-7 [PMID: 25060197]
  23. Nat Protoc. 2019 Apr;14(4):1054-1083 [PMID: 30842616]
  24. Opt Commun. 2018 Mar 15;411:53-58 [PMID: 30140109]
  25. Nature. 2009 Feb 26;457(7233):1159-62 [PMID: 19098897]

Grants

  1. R15 GM116043/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0illuminationconcentrationrangewellconfinementsurfacefluorescenceFCSmethodfluctuationssamplevolumecellmembranesmoleculeslongitudinaleffectivecanwaveguidespotexitobtainedsimulationsscenariosfluorophores3Dnanowaveguide2DcorrelationspectroscopyFluorescenceCorrelationSpectroscopyinvestigatingfluorescentparticlestypicallynMresultfemtoliter-sizedHoweverbiologicalprocessesinvolveμMrequirevolumesconventionallimitnanoscaledirectionstudyshowmeasurementzeptoliterachievedviaintroductionnanowireresulting50 nmlateraldimensionsaround20 nmjustUsingprofilesfiniteelementdielectricnanowaveguidesperformMonteCarlotwofluorophoremovement:freelydiffusingthree-dimensionalspacemovingtwo-dimensionalmembranesituateddirectlydevelopedanalyticalfunctionsfitsimulationresultsfoundsize150zl4×10mrespectivelyGivenflatgeometrydeep-subwavelengthnanowaveguide-illuminatedtechniquemaysuitedstudyingdynamicsdenselydistributedproteinNanowaveguide-illuminatedsinglemoleculestudies

Similar Articles

Cited By