High-dose Mycobacterium tuberculosis aerosol challenge cannot overcome BCG-induced protection in Chinese origin cynomolgus macaques; implications of natural resistance for vaccine evaluation.

Laura Sibley, Andrew D White, Karen E Gooch, Lisa M Stevens, Rachel Tanner, Ashley Jacobs, Owen Daykin-Pont, Fergus Gleeson, Anthony McIntyre, Randall Basaraba, Simon Clark, Graham Hall, Geoff Pearson, Emma Rayner, Helen McShane, Ann Williams, Mike Dennis, Philip D Marsh, Sally Sharpe
Author Information
  1. Laura Sibley: National Infection Service, Public Health England, Porton Down, Wiltshire, SP4 0JG, UK. laura.sibley@phe.gov.uk.
  2. Andrew D White: National Infection Service, Public Health England, Porton Down, Wiltshire, SP4 0JG, UK.
  3. Karen E Gooch: National Infection Service, Public Health England, Porton Down, Wiltshire, SP4 0JG, UK.
  4. Lisa M Stevens: National Infection Service, Public Health England, Porton Down, Wiltshire, SP4 0JG, UK.
  5. Rachel Tanner: Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, UK.
  6. Ashley Jacobs: University of Cape Town, Cape Town, South Africa.
  7. Owen Daykin-Pont: National Infection Service, Public Health England, Porton Down, Wiltshire, SP4 0JG, UK.
  8. Fergus Gleeson: Churchill Hospital, Headington, Oxford, UK.
  9. Anthony McIntyre: Churchill Hospital, Headington, Oxford, UK.
  10. Randall Basaraba: Colorado State University, Fort Collins, CO, USA.
  11. Simon Clark: National Infection Service, Public Health England, Porton Down, Wiltshire, SP4 0JG, UK.
  12. Graham Hall: National Infection Service, Public Health England, Porton Down, Wiltshire, SP4 0JG, UK.
  13. Geoff Pearson: National Infection Service, Public Health England, Porton Down, Wiltshire, SP4 0JG, UK.
  14. Emma Rayner: National Infection Service, Public Health England, Porton Down, Wiltshire, SP4 0JG, UK.
  15. Helen McShane: Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, UK.
  16. Ann Williams: National Infection Service, Public Health England, Porton Down, Wiltshire, SP4 0JG, UK.
  17. Mike Dennis: National Infection Service, Public Health England, Porton Down, Wiltshire, SP4 0JG, UK.
  18. Philip D Marsh: National Infection Service, Public Health England, Porton Down, Wiltshire, SP4 0JG, UK.
  19. Sally Sharpe: National Infection Service, Public Health England, Porton Down, Wiltshire, SP4 0JG, UK.

Abstract

This study describes the use of cynomolgus macaques of Chinese origin (CCM) to evaluate the efficacy and immunogenicity of the BCG vaccine against high dose aerosol Mycobacterium tuberculosis challenge. Progressive disease developed in three of the unvaccinated animals within 10 weeks of challenge, whereas all six vaccinated animals controlled disease for 26 weeks. Three unvaccinated animals limited disease progression, highlighting the intrinsic ability of this macaque species to control disease in comparison to macaques of other species and genotypes. Low levels of IFNγ were induced by BCG vaccination in CCM suggesting that IFNγ alone does not provide a sufficiently sensitive biomarker of vaccination in this model. An early response after challenge, together with the natural bias towards terminal effector memory T-cell populations and the contribution of monocytes appears to enhance the ability of CCM to naturally control infection. The high dose aerosol challenge model of CCM has value for examination of the host immune system to characterise control of infection which would influence future vaccine design. Although it may not be the preferred platform for the assessment of prophylactic vaccine candidates, the model could be well suited for testing post-exposure vaccination strategies and drug evaluation studies.

References

  1. Cytometry A. 2011 Feb;79(2):167-74 [PMID: 21265010]
  2. Lancet. 2006 Apr 8;367(9517):1173-80 [PMID: 16616560]
  3. Tuberculosis (Edinb). 2008 Nov;88(6):631-40 [PMID: 18801705]
  4. Pharmaceutics. 2020 Apr 25;12(5): [PMID: 32344890]
  5. Infect Immun. 2009 Oct;77(10):4631-42 [PMID: 19620341]
  6. J Clin Invest. 2012 Jan;122(1):303-14 [PMID: 22133873]
  7. JAMA. 1994 Mar 2;271(9):698-702 [PMID: 8309034]
  8. PLoS One. 2009 Jun 16;4(6):e5930 [PMID: 19529771]
  9. J Appl Microbiol. 2011 Aug;111(2):350-9 [PMID: 21651681]
  10. Front Immunol. 2017 Oct 05;8:1262 [PMID: 29051764]
  11. Tuberculosis (Edinb). 2016 Jan;96:1-12 [PMID: 26786648]
  12. Microbiol Spectr. 2016 Aug;4(4): [PMID: 27726820]
  13. Front Immunol. 2017 Sep 19;8:1147 [PMID: 28974949]
  14. Vaccine. 2015 Aug 7;33(33):4130-40 [PMID: 26095509]
  15. PLoS One. 2017 Mar 8;12(3):e0171906 [PMID: 28273087]
  16. Nat Med. 2018 Feb;24(2):130-143 [PMID: 29334373]
  17. Vaccine. 2016 Oct 17;34(44):5298-5305 [PMID: 27622301]
  18. PLoS One. 2014 Feb 03;9(2):e87340 [PMID: 24498312]
  19. Am J Respir Crit Care Med. 2010 Oct 15;182(8):1073-9 [PMID: 20558627]
  20. Nat Rev Immunol. 2008 Apr;8(4):247-58 [PMID: 18323851]
  21. J Med Primatol. 2012 Jun;41(3):191-201 [PMID: 22429048]
  22. Infect Immun. 2001 Apr;69(4):2666-74 [PMID: 11254633]
  23. Nat Med. 1996 Apr;2(4):430-6 [PMID: 8597953]
  24. Infect Immun. 2003 Oct;71(10):5831-44 [PMID: 14500505]
  25. Tuberculosis (Edinb). 2016 Dec;101:174-190 [PMID: 27865390]
  26. Nature. 2020 Jan;577(7788):95-102 [PMID: 31894150]
  27. Tuberculosis (Edinb). 2016 Jan;96:141-9 [PMID: 26723465]
  28. J Hyg (Lond). 1969 Sep;67(3):437-48 [PMID: 5258223]
  29. J Immunol. 2009 Jun 15;182(12):8047-55 [PMID: 19494330]
  30. N Engl J Med. 2019 Dec 19;381(25):2429-2439 [PMID: 31661198]
  31. Infect Immun. 2018 Jan 22;86(2): [PMID: 28947646]
  32. J Acquir Immune Defic Syndr. 2014 Dec 15;67(5):573-5 [PMID: 25247435]
  33. Front Immunol. 2020 Jan 10;10:2983 [PMID: 31998295]
  34. Tuberculosis (Edinb). 2008 Jan;88(1):31-8 [PMID: 18277396]
  35. Sci Rep. 2019 Mar 4;9(1):3340 [PMID: 30833652]
  36. Nat Med. 2007 Jul;13(7):843-50 [PMID: 17558415]
  37. J Infect. 2014 Dec;69(6):533-45 [PMID: 24975174]
  38. Infect Immun. 2018 Jan 22;86(2): [PMID: 29203540]
  39. Cold Spring Harb Perspect Med. 2014 Sep 11;4(12):a018564 [PMID: 25213189]
  40. J Hyg (Lond). 1962 Jun;60:249-57 [PMID: 13904776]
  41. Clin Vaccine Immunol. 2010 Aug;17(8):1170-82 [PMID: 20534795]
  42. J Infect Dis. 2014 Feb 15;209(4):500-9 [PMID: 24041796]
  43. Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11497-502 [PMID: 11562492]
  44. Front Immunol. 2019 Nov 01;10:2479 [PMID: 31736945]
  45. NPJ Vaccines. 2021 Jan 4;6(1):4 [PMID: 33397991]
  46. Clin Vaccine Immunol. 2013 May;20(5):663-72 [PMID: 23446219]
  47. PLoS Pathog. 2009 Apr;5(4):e1000392 [PMID: 19381260]
  48. NPJ Vaccines. 2021 Jan 4;6(1):3 [PMID: 33397986]
  49. Eur J Clin Microbiol Infect Dis. 2005 Aug;24(8):529-36 [PMID: 16133410]
  50. Tuberculosis (Edinb). 2009 Nov;89(6):405-16 [PMID: 19879805]
  51. Eur J Immunol. 2010 Aug;40(8):2211-20 [PMID: 20540114]

Grants

  1. /Department of Health

MeSH Term

Administration, Inhalation
Animals
BCG Vaccine
Cytokines
Disease Models, Animal
Disease Progression
Host-Pathogen Interactions
Immunity, Humoral
Immunization
Immunologic Memory
Macaca
Male
Mycobacterium tuberculosis
T-Lymphocyte Subsets
Tuberculosis

Chemicals

BCG Vaccine
Cytokines

Word Cloud

Created with Highcharts 10.0.0challengeCCMvaccinediseasemacaquesaerosolanimalscontrolvaccinationmodelcynomolgusChineseoriginBCGhighdoseMycobacteriumtuberculosisunvaccinatedabilityspeciesIFNγnaturalinfectionevaluationstudydescribesuseevaluateefficacyimmunogenicityProgressivedevelopedthreewithin10 weekswhereassixvaccinatedcontrolled26 weeksThreelimitedprogressionhighlightingintrinsicmacaquecomparisongenotypesLowlevelsinducedsuggestingaloneprovidesufficientlysensitivebiomarkerearlyresponsetogetherbiastowardsterminaleffectormemoryT-cellpopulationscontributionmonocytesappearsenhancenaturallyvalueexaminationhostimmunesystemcharacteriseinfluencefuturedesignAlthoughmaypreferredplatformassessmentprophylacticcandidateswellsuitedtestingpost-exposurestrategiesdrugstudiesHigh-doseovercomeBCG-inducedprotectionimplicationsresistance

Similar Articles

Cited By