Differential Regulation of Maize and Sorghum Orthologs in Response to the Fungal Pathogen .

Pragya Adhikari, Santiago X Mideros, Tiffany M Jamann
Author Information
  1. Pragya Adhikari: Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
  2. Santiago X Mideros: Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
  3. Tiffany M Jamann: Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.

Abstract

Pathogens that infect more than one host offer an opportunity to study how resistance mechanisms have evolved across different species. infects both maize and sorghum and the isolates are host-specific, offering a unique system to examine both compatible and incompatible interactions. We conducted transcriptional analysis of maize and sorghum in response to maize-specific and sorghum-specific isolates and identified functionally related co-expressed modules. Maize had a more robust transcriptional response than sorghum. responsive genes were enriched in core orthologs in both crops, but only up to 16% of core orthologs showed conserved expression patterns. Most changes in gene expression for the core orthologs, including hub genes, were lineage specific, suggesting a role for regulatory divergent evolution. We identified several defense-related shared differentially expressed (DE) orthologs with conserved expression patterns between the two crops, suggesting a role for parallel evolution of those genes in both crops. Many of the differentially expressed genes (DEGs) during the incompatible interaction were related to quantitative disease resistance (QDR). This work offers insights into how different hosts with relatively recent divergence interact with a common pathogen. Our results are important for developing resistance to this critical pathogen and understanding the evolution of host-pathogen interactions.

Keywords

References

  1. Plant Cell. 2017 Apr;29(4):655-665 [PMID: 28302676]
  2. Trends Genet. 2013 Dec;29(12):669-76 [PMID: 24161664]
  3. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  4. Hortic Res. 2016 Aug 10;3:16035 [PMID: 27555919]
  5. Plant Physiol. 2015 Nov;169(3):2230-43 [PMID: 26373661]
  6. Sci Rep. 2016 May 06;6:25591 [PMID: 27151494]
  7. Theor Appl Genet. 2016 Mar;129(3):591-602 [PMID: 26849237]
  8. Front Plant Sci. 2017 Aug 29;8:1490 [PMID: 28900437]
  9. PLoS Pathog. 2012;8(12):e1003037 [PMID: 23236275]
  10. Nat Biotechnol. 2012 May 07;30(5):390-2 [PMID: 22565958]
  11. Science. 2013 Aug 16;341(6147):746-51 [PMID: 23950531]
  12. Phytopathology. 2006 Feb;96(2):120-9 [PMID: 18943914]
  13. Plant J. 1997 Jan;11(1):45-52 [PMID: 9025301]
  14. Curr Opin Plant Biol. 2020 Apr;54:108-113 [PMID: 32344327]
  15. Nat Genet. 2015 Dec;47(12):1494-8 [PMID: 26551671]
  16. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  17. Plant Cell. 2020 Jun;32(6):1820-1844 [PMID: 32265317]
  18. Front Plant Sci. 2016 Mar 07;7:251 [PMID: 27014286]
  19. Mol Plant Pathol. 2014 Jun;15(5):427-32 [PMID: 24796392]
  20. Phytopathology. 1998 Apr;88(4):322-9 [PMID: 18944955]
  21. Mycologia. 2019 Jul-Aug;111(4):563-573 [PMID: 31112486]
  22. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6809-14 [PMID: 11038553]
  23. Science. 2009 Nov 20;326(5956):1112-5 [PMID: 19965430]
  24. BMC Genomics. 2019 Dec 3;20(1):925 [PMID: 31795948]
  25. J Exp Bot. 2015 Dec;66(22):7197-209 [PMID: 26428067]
  26. Nature. 2009 Jan 29;457(7229):551-6 [PMID: 19189423]
  27. Trends Genet. 2018 Jul;34(7):532-544 [PMID: 29680748]
  28. Science. 1993 Nov 26;262(5138):1432-6 [PMID: 7902614]
  29. Plant Dis. 2012 Nov;96(11):1629-1633 [PMID: 30727452]
  30. Front Plant Sci. 2016 Apr 25;7:529 [PMID: 27200008]
  31. PLoS One. 2013;8(3):e59720 [PMID: 23544090]
  32. Plant Cell. 1997 Jan;9(1):49-60 [PMID: 9014364]
  33. Genome Res. 2004 Oct;14(10A):1916-23 [PMID: 15466289]
  34. Front Plant Sci. 2015 Jun 08;6:428 [PMID: 26106404]
  35. Nat Genet. 2011 Feb;43(2):163-8 [PMID: 21217757]
  36. Science. 2016 Dec 16;354(6318):1427-1430 [PMID: 27884939]
  37. Plant Cell. 2003 Feb;15(2):317-30 [PMID: 12566575]
  38. Curr Opin Plant Biol. 2008 Aug;11(4):404-11 [PMID: 18499508]
  39. Ann Appl Stat. 2016 Jun;10(2):946-963 [PMID: 28367255]
  40. Nat Protoc. 2008;3(6):1101-8 [PMID: 18546601]
  41. Trends Plant Sci. 2009 Jan;14(1):21-9 [PMID: 19062327]
  42. Genome Biol. 2010;11(3):R25 [PMID: 20196867]
  43. Mol Plant Microbe Interact. 2020 Feb;33(2):235-246 [PMID: 31721651]
  44. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  45. Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4069-74 [PMID: 21368132]
  46. Plant Cell. 2017 Aug;29(8):1938-1951 [PMID: 28733421]
  47. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  48. Cell. 2017 Jun 15;169(7):1177-1186 [PMID: 28622505]
  49. Annu Rev Phytopathol. 2002;40:349-79 [PMID: 12147764]
  50. PLoS Genet. 2016 Feb 11;12(2):e1005789 [PMID: 26866607]
  51. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  52. New Phytol. 2020 Jan;225(1):118-125 [PMID: 31225901]
  53. PLoS One. 2014 Aug 07;9(8):e102869 [PMID: 25101956]
  54. Nat Genet. 2015 Feb;47(2):151-7 [PMID: 25531751]
  55. BMC Plant Biol. 2011 Nov 03;11:151 [PMID: 22050783]
  56. Nat Genet. 2008 Mar;40(3):346-50 [PMID: 18278046]
  57. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  58. Science. 1995 Dec 15;270(5243):1804-6 [PMID: 8525370]
  59. BMC Plant Biol. 2010 Jun 08;10:103 [PMID: 20529319]
  60. BMC Plant Biol. 2020 Feb 10;20(1):67 [PMID: 32041528]
  61. Nature. 2006 Nov 16;444(7117):323-9 [PMID: 17108957]
  62. Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8780-5 [PMID: 26124097]
  63. Front Genet. 2020 Jan 17;10:1275 [PMID: 32010176]
  64. Stat Appl Genet Mol Biol. 2004;3:Article3 [PMID: 16646809]
  65. Gene. 2013 Jan 10;512(2):259-66 [PMID: 23107761]
  66. Mol Plant Microbe Interact. 2014 Oct;27(10):1159-69 [PMID: 25014592]
  67. New Phytol. 2013 Oct;200(1):172-184 [PMID: 23790083]
  68. PLoS Pathog. 2018 Jan 31;14(1):e1006878 [PMID: 29385213]
  69. PLoS Genet. 2009 Jul;5(7):e1000581 [PMID: 19649161]
  70. Nucleic Acids Res. 2017 Jul 3;45(W1):W122-W129 [PMID: 28472432]
  71. Nature. 2001 Jun 14;411(6839):826-33 [PMID: 11459065]
  72. Annu Rev Microbiol. 2003;57:177-202 [PMID: 14527276]

Word Cloud

Created with Highcharts 10.0.0resistancesorghumgenesorthologsmaizecorecropsexpressionevolutionhostdifferentisolatesincompatibleinteractionstranscriptionalresponseidentifiedrelatedMaizeconservedpatternssuggestingroledifferentiallyexpressedquantitativediseasepathogenPathogensinfectoneofferopportunitystudymechanismsevolvedacrossspeciesinfectshost-specificofferinguniquesystemexaminecompatibleconductedanalysismaize-specificsorghum-specificfunctionallyco-expressedmodulesrobustresponsiveenriched16%showedchangesgeneincludinghublineagespecificregulatorydivergentseveraldefense-relatedsharedDEtwoparallelManyDEGsinteractionQDRworkoffersinsightshostsrelativelyrecentdivergenceinteractcommonresultsimportantdevelopingcriticalunderstandinghost-pathogenDifferentialRegulationSorghumOrthologsResponseFungalPathogenExserohilumturcicumZeamaysLtranscriptome

Similar Articles

Cited By