Real-time imaging of cellular forces using optical interference.

Andrew T Meek, Nils M Kronenberg, Andrew Morton, Philipp Liehm, Jan Murawski, Eleni Dalaka, Jonathan H Booth, Simon J Powis, Malte C Gather
Author Information
  1. Andrew T Meek: SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, UK.
  2. Nils M Kronenberg: SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, UK. ORCID
  3. Andrew Morton: SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, UK.
  4. Philipp Liehm: SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, UK. ORCID
  5. Jan Murawski: SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, UK.
  6. Eleni Dalaka: SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, UK. ORCID
  7. Jonathan H Booth: SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, UK.
  8. Simon J Powis: School of Medicine, University of St Andrews, North Haugh, St Andrews, UK. ORCID
  9. Malte C Gather: SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, UK. mcg6@st-andrews.ac.uk. ORCID

Abstract

Important dynamic processes in mechanobiology remain elusive due to a lack of tools to image the small cellular forces at play with sufficient speed and throughput. Here, we introduce a fast, interference-based force imaging method that uses the illumination of an elastic deformable microcavity with two rapidly alternating wavelengths to map forces. We show real-time acquisition and processing of data, obtain images of mechanical activity while scanning across a cell culture, and investigate sub-second fluctuations of the piconewton forces exerted by macrophage podosomes. We also demonstrate force imaging of beating neonatal cardiomyocytes at 100 fps which reveals mechanical aspects of spontaneous oscillatory contraction waves in between the main contraction cycles. These examples illustrate the wider potential of our technique for monitoring cellular forces with high throughput and excellent temporal resolution.

References

  1. Biophys Rev. 2015 Mar;7(1):15-24 [PMID: 28509984]
  2. Biophys J. 2008 Oct;95(7):3479-87 [PMID: 18586852]
  3. Am J Physiol Heart Circ Physiol. 2006 Jun;290(6):H2196-203 [PMID: 16473959]
  4. Nano Lett. 2016 Jul 13;16(7):4062-8 [PMID: 27210030]
  5. Biochim Biophys Acta. 2015 Nov;1853(11 Pt B):3095-104 [PMID: 26026889]
  6. Biomed Opt Express. 2012 Jan 1;3(1):153-9 [PMID: 22254175]
  7. J Cell Sci. 2005 May 15;118(Pt 10):2079-82 [PMID: 15890982]
  8. FASEB J. 2010 Aug;24(8):2739-51 [PMID: 20371616]
  9. Nano Lett. 2016 Apr 13;16(4):2633-8 [PMID: 26923775]
  10. Nature. 2010 Jan 28;463(7280):485-92 [PMID: 20110992]
  11. Nat Cell Biol. 2017 Jul;19(7):864-872 [PMID: 28628084]
  12. Methods Cell Biol. 2015;125:289-308 [PMID: 25640435]
  13. Biophys J. 2018 May 8;114(9):2180-2193 [PMID: 29742411]
  14. J Cell Sci. 2012 Feb 1;125(Pt 3):743-50 [PMID: 22389408]
  15. Nat Commun. 2014 Nov 11;5:5343 [PMID: 25385672]
  16. Sci Adv. 2020 Mar 11;6(11):eaax6912 [PMID: 32195338]
  17. Opt Lett. 2005 Aug 15;30(16):2131-3 [PMID: 16127933]
  18. Appl Opt. 1992 Dec 1;31(34):7361-6 [PMID: 20802607]
  19. Ann Med. 2003;35(8):564-77 [PMID: 14708967]
  20. Front Cell Neurosci. 2020 Sep 04;14:552213 [PMID: 33088261]
  21. Sci Adv. 2018 Jun 27;4(6):eaap8030 [PMID: 29963620]
  22. J Cell Sci. 2008 Nov 15;121(Pt 22):3794-802 [PMID: 18957515]
  23. Toxicol Sci. 2011 Sep;123(1):281-9 [PMID: 21693436]
  24. Am J Physiol Cell Physiol. 2011 Nov;301(5):C1116-27 [PMID: 21813712]
  25. J Nanobiotechnology. 2005 May 31;3(1):4 [PMID: 15927047]
  26. Opt Express. 2016 Jul 25;24(15):16366-89 [PMID: 27464090]
  27. Biophys J. 2011 Nov 16;101(10):2455-64 [PMID: 22098744]
  28. J Cell Mol Med. 2011 Jan;15(1):38-51 [PMID: 20041972]
  29. Opt Lett. 1986 Mar 1;11(3):150 [PMID: 19730562]
  30. Nat Mater. 2020 Sep;19(9):1019-1025 [PMID: 32451510]
  31. Nat Rev Drug Discov. 2016 Jul;15(7):457-71 [PMID: 26893184]
  32. Stem Cells. 2016 Aug;34(8):2008-15 [PMID: 27250776]
  33. Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5328-33 [PMID: 22431603]
  34. Nat Methods. 2015 Jul;12(7):653-6 [PMID: 26030446]

MeSH Term

Animals
Cell Adhesion
Diagnostic Imaging
Fibroblasts
Humans
Macrophages
Mechanotransduction, Cellular
Mice
Microscopy, Interference
Models, Theoretical
NIH 3T3 Cells
Podosomes

Word Cloud

Created with Highcharts 10.0.0forcescellularimagingthroughputforcemechanicalcontractionImportantdynamicprocessesmechanobiologyremainelusiveduelacktoolsimagesmallplaysufficientspeedintroducefastinterference-basedmethodusesilluminationelasticdeformablemicrocavitytworapidlyalternatingwavelengthsmapshowreal-timeacquisitionprocessingdataobtainimagesactivityscanningacrosscellcultureinvestigatesub-secondfluctuationspiconewtonexertedmacrophagepodosomesalsodemonstratebeatingneonatalcardiomyocytes100fpsrevealsaspectsspontaneousoscillatorywavesmaincyclesexamplesillustratewiderpotentialtechniquemonitoringhighexcellenttemporalresolutionReal-timeusingopticalinterference

Similar Articles

Cited By