Explorations of Sarcopenia via a Dynamic Model.

Kuan Tao, Yushuang Duan, Huohuo Wang, Dan Zeng, Zilong Fang, Huiping Yan, Yifan Lu
Author Information
  1. Kuan Tao: School of Sports Engineering, Beijing Sport University, Beijing, China.
  2. Yushuang Duan: School of Sport Medicine and Physical Therapy, Beijing Sport University, Beijing, China.
  3. Huohuo Wang: School of Sport Medicine and Physical Therapy, Beijing Sport University, Beijing, China.
  4. Dan Zeng: School of Sport Medicine and Physical Therapy, Beijing Sport University, Beijing, China.
  5. Zilong Fang: School of Sport Medicine and Physical Therapy, Beijing Sport University, Beijing, China.
  6. Huiping Yan: School of Sport Medicine and Physical Therapy, Beijing Sport University, Beijing, China.
  7. Yifan Lu: School of Sport Medicine and Physical Therapy, Beijing Sport University, Beijing, China.

Abstract

The cause of sarcopenia has been observed over decades by clinical trials, which, however, are still insufficient to systematically unravel the enigma of how resistance exercise mediates skeletal muscle mass. Here, we proposed a minimal regulatory network and developed a dynamic model to rigorously investigate the mechanism of sarcopenia. Our model is consisted of eight ordinary differential equations and incorporates linear and Hill-function terms to describe positive and negative feedbacks between protein species, respectively. A total of 720 samples with 10 scaled intensities were included in simulations, which revealed the expression level of AKT (maximum around 3.9-fold) and mTOR (maximum around 5.5-fold) at 3, 6, and 24 h at high intensity, and non-monotonic relation (ranging from 1.2-fold to 1.7-fold) between the graded intensities and skeletal muscle mass. Furthermore, continuous dynamics (within 24 h) of AKT, mTOR, and other proteins were obtained accordingly, and we also predicted the delaying effect with the median of maximized muscle mass shifting from 1.8-fold to 4.6-fold during a 4-fold increase of delay coefficient. The modeling framework sheds light on the interdisciplinary methodology integrating computational approaches with experimental results, which facilitates the deeper understandings of exercise training and sarcopenia.

Keywords

References

  1. Cell Metab. 2012 Nov 7;16(5):613-24 [PMID: 23140641]
  2. Clin Sci (Lond). 1992 Mar;82(3):321-7 [PMID: 1312417]
  3. Front Physiol. 2018 Sep 24;9:1307 [PMID: 30319436]
  4. J Clin Invest. 2006 Nov;116(11):2945-54 [PMID: 17080195]
  5. Mol Cell. 2004 May 7;14(3):395-403 [PMID: 15125842]
  6. Front Nutr. 2019 Sep 10;6:146 [PMID: 31552262]
  7. Eur J Appl Physiol. 2017 Nov;117(11):2355-2363 [PMID: 28940037]
  8. Front Physiol. 2020 Jul 23;11:874 [PMID: 32792984]
  9. Exerc Sport Sci Rev. 2014 Apr;42(2):53-61 [PMID: 24508740]
  10. J Gerontol A Biol Sci Med Sci. 2007 Dec;62(12):1407-12 [PMID: 18166693]
  11. Front Microbiol. 2017 Sep 01;8:1687 [PMID: 28919891]
  12. Am J Physiol Cell Physiol. 2014 Apr 15;306(8):C762-7 [PMID: 24553183]
  13. Am J Physiol Cell Physiol. 2009 Jun;296(6):C1248-57 [PMID: 19357234]
  14. Gut. 2018 Apr;67(4):625-633 [PMID: 28360096]
  15. Microbiome. 2016 Aug 08;4(1):42 [PMID: 27502158]
  16. Mol Cell Endocrinol. 2017 Jan 5;439:224-232 [PMID: 27619406]
  17. Adv Exp Med Biol. 2018;1088:139-151 [PMID: 30390251]
  18. Appl Physiol Nutr Metab. 2012 Feb;37(1):21-30 [PMID: 22148961]
  19. Int J Biochem Cell Biol. 2013 Oct;45(10):2333-47 [PMID: 23721881]
  20. Front Physiol. 2020 Nov 12;11:573416 [PMID: 33281615]
  21. Am J Med Sci. 2015 Oct;350(4):250-6 [PMID: 26083652]
  22. Int J Mol Sci. 2020 Nov 25;21(23): [PMID: 33255677]
  23. Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):E7554-E7563 [PMID: 27821775]
  24. J Appl Physiol (1985). 2007 Jul;103(1):378-87 [PMID: 17332274]
  25. Phys Act Nutr. 2020 Sep;24(3):32-38 [PMID: 33108716]
  26. Am J Physiol Endocrinol Metab. 2014 Sep 15;307(6):E469-84 [PMID: 25096180]
  27. J Cell Biol. 2012 Jun 25;197(7):997-1008 [PMID: 22711699]
  28. Aging Cell. 2015 Dec;14(6):957-70 [PMID: 26290460]
  29. Int J Mol Sci. 2020 Jun 02;21(11): [PMID: 32498275]
  30. Theranostics. 2020 May 16;10(14):6448-6466 [PMID: 32483463]
  31. PLoS One. 2014 Mar 26;9(3):e92193 [PMID: 24670791]
  32. Eur J Appl Physiol. 2014 Apr;114(4):735-42 [PMID: 24384983]
  33. Cell Mol Life Sci. 2014 Nov;71(22):4361-71 [PMID: 25080109]
  34. mSystems. 2017 Aug 22;2(4): [PMID: 28845459]
  35. Am J Physiol Regul Integr Comp Physiol. 2011 Mar;300(3):R655-62 [PMID: 21160058]
  36. Cell. 2004 Apr 30;117(3):399-412 [PMID: 15109499]
  37. Biosci Biotechnol Biochem. 2008 Feb;72(2):572-6 [PMID: 18256465]
  38. J Cachexia Sarcopenia Muscle. 2017 Apr;8(2):190-201 [PMID: 27897400]
  39. J Am Geriatr Soc. 2001 Nov;49(11):1428-33 [PMID: 11890579]
  40. Trends Mol Med. 2003 Aug;9(8):344-50 [PMID: 12928036]
  41. Respir Res. 2001;2(5):269-72 [PMID: 11686894]
  42. J Lipid Res. 2013 Sep;54(9):2325-40 [PMID: 23821742]
  43. Int J Sport Nutr Exerc Metab. 2001 Mar;11(1):109-32 [PMID: 11255140]
  44. Skelet Muscle. 2011 Mar 02;1(1):11 [PMID: 21798089]
  45. Scand J Med Sci Sports. 2018 May;28(5):1541-1551 [PMID: 29364545]
  46. J Appl Physiol (1985). 2009 Nov;107(5):1655-62 [PMID: 19589955]
  47. Am J Physiol Cell Physiol. 2007 Jan;292(1):C188-99 [PMID: 16885393]
  48. J Appl Physiol (1985). 2020 Jan 1;128(1):87-99 [PMID: 31751180]
  49. J Am Soc Nephrol. 2004 Jun;15(6):1537-45 [PMID: 15153564]
  50. Am J Physiol Cell Physiol. 2009 Jun;296(6):C1258-70 [PMID: 19357233]

Word Cloud

Created with Highcharts 10.0.0sarcopeniamusclemassmodel1resistanceexerciseskeletalproteinintensitiesAKTmaximumaround3mTOR24htrainingcauseobserveddecadesclinicaltrialshoweverstillinsufficientsystematicallyunravelenigmamediatesproposedminimalregulatorynetworkdevelopeddynamicrigorouslyinvestigatemechanismconsistedeightordinarydifferentialequationsincorporateslinearHill-functiontermsdescribepositivenegativefeedbacksspeciesrespectivelytotal720samples10scaledincludedsimulationsrevealedexpressionlevel9-fold55-fold6highintensitynon-monotonicrelationranging2-fold7-foldgradedFurthermorecontinuousdynamicswithinproteinsobtainedaccordinglyalsopredicteddelayingeffectmedianmaximizedshifting8-fold46-fold4-foldincreasedelaycoefficientmodelingframeworkshedslightinterdisciplinarymethodologyintegratingcomputationalapproachesexperimentalresultsfacilitatesdeeperunderstandingsExplorationsSarcopeniaviaDynamicModelgutmicrobiotamathematicalsynthesis

Similar Articles

Cited By