RAMRSGL: A Robust Adaptive Multinomial Regression Model for Multicancer Classification.

Lei Wang, Juntao Li, Juanfang Liu, Mingming Chang
Author Information
  1. Lei Wang: Department of Basic Science Teaching, Henan Polytechnic Institute, Nanyang, 473000 Henan, China. ORCID
  2. Juntao Li: College of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007 Henan, China. ORCID
  3. Juanfang Liu: College of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007 Henan, China. ORCID
  4. Mingming Chang: College of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007 Henan, China. ORCID

Abstract

In view of the challenges of the group Lasso penalty methods for multicancer microarray data analysis, e.g., dividing genes into groups in advance and biological interpretability, we propose a robust adaptive multinomial regression with sparse group Lasso penalty (RAMRSGL) model. By adopting the overlapping clustering strategy, affinity propagation clustering is employed to obtain each cancer gene subtype, which explores the group structure of each cancer subtype and merges the groups of all subtypes. In addition, the data-driven weights based on noise are added to the sparse group Lasso penalty, combining with the multinomial log-likelihood function to perform multiclassification and adaptive group gene selection simultaneously. The experimental results on acute leukemia data verify the effectiveness of the proposed method.

References

  1. PLoS One. 2017 Aug 28;12(8):e0183518 [PMID: 28846717]
  2. Oncotarget. 2020 Mar 31;11(13):1097-1108 [PMID: 32284788]
  3. Cell Biochem Funct. 2020 Oct;38(7):870-879 [PMID: 32283566]
  4. Nat Rev Immunol. 2014 Apr;14(4):271-80 [PMID: 24662387]
  5. Genes (Basel). 2019 Mar 21;10(3): [PMID: 30901858]
  6. Bioinformatics. 2003 Jun 12;19(9):1132-9 [PMID: 12801874]
  7. Drug Discov Today. 2021 Jul;26(7):1728-1734 [PMID: 33746067]
  8. Bioinformatics. 2003 Sep 22;19(14):1787-99 [PMID: 14512350]
  9. PLoS One. 2016 Oct 21;11(10):e0164896 [PMID: 27768721]
  10. Stat Appl Genet Mol Biol. 2005;4:Article17 [PMID: 16646834]
  11. Int J Cancer. 2018 Oct 1;143(7):1731-1740 [PMID: 29696646]
  12. Science. 1999 Oct 15;286(5439):531-7 [PMID: 10521349]
  13. Comput Biol Med. 2018 Sep 1;100:1-9 [PMID: 29957558]
  14. Bioinformatics. 2007 Oct 1;23(19):2507-17 [PMID: 17720704]
  15. Stat Med. 2020 Mar 30;39(7):955-967 [PMID: 31880351]
  16. Science. 2007 Feb 16;315(5814):972-6 [PMID: 17218491]
  17. Clin Transl Oncol. 2021 Sep;23(9):1743-1751 [PMID: 33721187]
  18. Int J Mol Sci. 2019 Aug 31;20(17): [PMID: 31480430]
  19. Bioinformatics. 2020 Jun 1;36(11):3568-3569 [PMID: 32154836]
  20. Comput Struct Biotechnol J. 2014 Nov 15;13:8-17 [PMID: 25750696]
  21. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8 [PMID: 9843981]
  22. Artif Intell Med. 2017 Feb;76:27-36 [PMID: 28363286]
  23. Bioinformatics. 2020 Mar 1;36(5):1391-1396 [PMID: 31593226]
  24. Data Min Knowl Discov. 2019;33(6):1894-1952 [PMID: 32831623]

MeSH Term

Algorithms
Cluster Analysis
Computational Biology
Databases, Genetic
Humans
Leukemia
Likelihood Functions
Models, Genetic
Multigene Family
Neoplasms
Oligonucleotide Array Sequence Analysis
Oncogenes
Regression Analysis

Word Cloud

Created with Highcharts 10.0.0groupLassopenaltydatagroupsadaptivemultinomialsparseclusteringcancergenesubtypeviewchallengesmethodsmulticancermicroarrayanalysisegdividinggenesadvancebiologicalinterpretabilityproposerobustregressionRAMRSGLmodeladoptingoverlappingstrategyaffinitypropagationemployedobtainexploresstructuremergessubtypesadditiondata-drivenweightsbasednoiseaddedcombininglog-likelihoodfunctionperformmulticlassificationselectionsimultaneouslyexperimentalresultsacuteleukemiaverifyeffectivenessproposedmethodRAMRSGL:RobustAdaptiveMultinomialRegressionModelMulticancerClassification

Similar Articles

Cited By