The Termite Fungal Cultivar Combines Diverse Enzymes and Oxidative Reactions for Plant Biomass Conversion.

Felix Schalk, Cene Gostinčar, Nina B Kreuzenbeck, Benjamin H Conlon, Elisabeth Sommerwerk, Patrick Rabe, Immo Burkhardt, Thomas Krüger, Olaf Kniemeyer, Axel A Brakhage, Nina Gunde-Cimerman, Z Wilhelm de Beer, Jeroen S Dickschat, Michael Poulsen, Christine Beemelmanns
Author Information
  1. Felix Schalk: Group of Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.
  2. Cene Gostinčar: Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
  3. Nina B Kreuzenbeck: Group of Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.
  4. Benjamin H Conlon: Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
  5. Elisabeth Sommerwerk: Group of Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.
  6. Patrick Rabe: Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany.
  7. Immo Burkhardt: Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany.
  8. Thomas Krüger: Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.
  9. Olaf Kniemeyer: Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.
  10. Axel A Brakhage: Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.
  11. Nina Gunde-Cimerman: Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
  12. Z Wilhelm de Beer: Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Hatfield, Pretoria, South Africa.
  13. Jeroen S Dickschat: Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany.
  14. Michael Poulsen: Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
  15. Christine Beemelmanns: Group of Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.

Abstract

Macrotermitine termites have domesticated fungi in the genus as their primary food source using predigested plant biomass. To access the full nutritional value of lignin-enriched plant biomass, the termite-fungus symbiosis requires the depolymerization of this complex phenolic polymer. While most previous work suggests that lignocellulose degradation is accomplished predominantly by the fungal cultivar, our current understanding of the underlying biomolecular mechanisms remains rudimentary. Here, we provide conclusive omics and activity-based evidence that employs not only a broad array of carbohydrate-active enzymes (CAZymes) but also a restricted set of oxidizing enzymes (manganese peroxidase, dye decolorization peroxidase, an unspecific peroxygenase, laccases, and aryl-alcohol oxidases) and Fenton chemistry for biomass degradation. We propose for the first time that induces hydroquinone-mediated Fenton chemistry (Fe + HO + H → Fe + OH + HO) using a herein newly described 2-methoxy-1,4-dihydroxybenzene (2-MHQ, compound 19)-based electron shuttle system to complement the enzymatic degradation pathways. This study provides a comprehensive depiction of how efficient biomass degradation by means of this ancient insect's agricultural symbiosis is accomplished. Fungus-growing termites have optimized the decomposition of recalcitrant plant biomass to access valuable nutrients by engaging in a tripartite symbiosis with complementary contributions from a fungal mutualist and a codiversified gut microbiome. This complex symbiotic interplay makes them one of the most successful and important decomposers for carbon cycling in Old World ecosystems. To date, most research has focused on the enzymatic contributions of microbial partners to carbohydrate decomposition. Here, we provide genomic, transcriptomic, and enzymatic evidence that also employs redox mechanisms, including diverse ligninolytic enzymes and a Fenton chemistry-based hydroquinone-catalyzed lignin degradation mechanism, to break down lignin-rich plant material. Insights into these efficient decomposition mechanisms reveal new sources of efficient ligninolytic agents applicable for energy generation from renewable sources.

Keywords

References

  1. Int J Biochem Mol Biol. 2010;1(1):36-50 [PMID: 21968746]
  2. Proc Natl Acad Sci U S A. 2018 Jun 19;115(25):6428-6433 [PMID: 29866821]
  3. Science. 2011 Aug 5;333(6043):762-5 [PMID: 21764756]
  4. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  5. Proc Natl Acad Sci U S A. 2017 May 2;114(18):4709-4714 [PMID: 28424249]
  6. Appl Environ Microbiol. 2015 Dec;81(24):8427-33 [PMID: 26431968]
  7. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  8. Appl Environ Microbiol. 2003 Oct;69(10):6025-31 [PMID: 14532058]
  9. Mol Biol Evol. 2021 Apr 13;38(4):1428-1446 [PMID: 33211093]
  10. Appl Microbiol Biotechnol. 2003 May;61(3):220-5 [PMID: 12698279]
  11. Anal Chem. 2012 Jul 17;84(14):6000-7 [PMID: 22746183]
  12. Curr Opin Chem Biol. 2014 Apr;19:1-7 [PMID: 24780273]
  13. Appl Environ Microbiol. 2018 Feb 14;84(5): [PMID: 29269491]
  14. Appl Environ Microbiol. 2001 Jun;67(6):2705-11 [PMID: 11375184]
  15. Nat Prod Rep. 2011 Nov;28(12):1883-96 [PMID: 21918777]
  16. Appl Environ Microbiol. 2005 Dec;71(12):7696-704 [PMID: 16332742]
  17. Sci Rep. 2018 Jul 17;8(1):10834 [PMID: 30018415]
  18. Methods Mol Biol. 2019;1962:65-95 [PMID: 31020555]
  19. Bioinformatics. 2002;18 Suppl 1:S96-104 [PMID: 12169536]
  20. Appl Environ Microbiol. 2013 Apr;79(7):2377-83 [PMID: 23377930]
  21. Science. 2012 Jun 29;336(6089):1715-9 [PMID: 22745431]
  22. Appl Microbiol Biotechnol. 2018 Mar;102(6):2477-2492 [PMID: 29411063]
  23. Insects. 2020 Aug 13;11(8): [PMID: 32823564]
  24. Biotechnol Biofuels. 2017 Apr 21;10:103 [PMID: 28439296]
  25. Appl Environ Microbiol. 2013 Jun;79(11):3380-91 [PMID: 23524681]
  26. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  27. J Environ Sci (China). 2016 Mar;41:16-23 [PMID: 26969046]
  28. Elife. 2021 Jan 12;10: [PMID: 33433325]
  29. Chemosphere. 2000 Oct;41(8):1187-92 [PMID: 10901245]
  30. J Basic Microbiol. 2007 Apr;47(2):127-31 [PMID: 17440914]
  31. Fungal Genet Biol. 2014 Nov;72:124-130 [PMID: 24915038]
  32. Plant Physiol. 2010 Jul;153(3):895-905 [PMID: 20472751]
  33. ACS Chem Biol. 2018 Oct 19;13(10):2920-2929 [PMID: 30247873]
  34. Nat Commun. 2020 Oct 12;11(1):5125 [PMID: 33046698]
  35. Sci Rep. 2018 Jul 2;8(1):9982 [PMID: 29967427]
  36. Environ Microbiol. 2006 Dec;8(12):2214-23 [PMID: 17107562]
  37. Environ Sci Technol. 2017 Aug 15;51(16):9053-9061 [PMID: 28691796]
  38. Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12932-7 [PMID: 18725643]
  39. Annu Rev Entomol. 2021 Jan 7;66:297-316 [PMID: 32926791]
  40. mSphere. 2021 Mar 3;6(2): [PMID: 33658277]
  41. Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450 [PMID: 30395289]
  42. Biotechnol Rep (Amst). 2017 Jan 03;13:49-57 [PMID: 28352563]
  43. Anal Biochem. 2014 Jun 1;454:36-7 [PMID: 24632099]
  44. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W465-7 [PMID: 15980513]
  45. Sci Rep. 2019 Jun 19;9(1):8819 [PMID: 31217550]
  46. Int J Mol Sci. 2018 Oct 28;19(11): [PMID: 30373305]
  47. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  48. mSphere. 2019 May 15;4(3): [PMID: 31092601]
  49. Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14500-5 [PMID: 25246537]
  50. Curr Opin Chem Biol. 2016 Apr;31:40-9 [PMID: 26812494]
  51. Int J Biol Sci. 2016 Jan 01;12(2):156-71 [PMID: 26884714]
  52. Appl Environ Microbiol. 2016 Jun 13;82(13):3979-3987 [PMID: 27107121]
  53. Nucleic Acids Res. 2018 Jul 2;46(W1):W95-W101 [PMID: 29771380]
  54. Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5 [PMID: 24270786]

MeSH Term

Animals
Biomass
Ecosystem
Gastrointestinal Microbiome
Gene Expression Profiling
Genome, Fungal
Isoptera
Lignin
Oxidation-Reduction
Oxidative Stress
Plants
Symbiosis
Termitomyces

Chemicals

lignocellulose
Lignin

Word Cloud

Created with Highcharts 10.0.0degradationbiomassplantsymbiosis+mechanismsenzymesFentonchemistryenzymaticefficientdecompositionredoxtermitesusingaccesscomplexlignocelluloseaccomplishedfungalprovideevidenceemploysalsoperoxidaseFeHOcontributionsligninolyticligninsourcesMacrotermitinedomesticatedfungigenusprimaryfoodsourcepredigestedfullnutritionalvaluelignin-enrichedtermite-fungusrequiresdepolymerizationphenolicpolymerpreviousworksuggestspredominantlycultivarcurrentunderstandingunderlyingbiomolecularremainsrudimentaryconclusiveomicsactivity-basedbroadarraycarbohydrate-activeCAZymesrestrictedsetoxidizingmanganesedyedecolorizationunspecificperoxygenaselaccasesaryl-alcoholoxidasesproposefirsttimeinduceshydroquinone-mediatedHOHhereinnewlydescribed2-methoxy-14-dihydroxybenzene2-MHQcompound19-basedelectronshuttlesystemcomplementpathwaysstudyprovidescomprehensivedepictionmeansancientinsect'sagriculturalFungus-growingoptimizedrecalcitrantvaluablenutrientsengagingtripartitecomplementarymutualistcodiversifiedgutmicrobiomesymbioticinterplaymakesonesuccessfulimportantdecomposerscarboncyclingOldWorldecosystemsdateresearchfocusedmicrobialpartnerscarbohydrategenomictranscriptomicincludingdiversechemistry-basedhydroquinone-catalyzedmechanismbreaklignin-richmaterialInsightsrevealnewagentsapplicableenergygenerationrenewableTermiteFungalCultivarCombinesDiverseEnzymesOxidativeReactionsPlantBiomassConversionTermitomycesbiodegradationmetabolitesproteinssecondarymetabolism

Similar Articles

Cited By (13)