Disease-dependent interaction policies to support health and economic outcomes during the COVID-19 epidemic.

Guanlin Li, Shashwat Shivam, Michael E Hochberg, Yorai Wardi, Joshua S Weitz
Author Information
  1. Guanlin Li: Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.
  2. Shashwat Shivam: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
  3. Michael E Hochberg: ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.
  4. Yorai Wardi: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
  5. Joshua S Weitz: School of Physics, Georgia Institute of Technology, Atlanta, GA, USA.

Abstract

Lockdowns and stay-at-home orders have partially mitigated the spread of Covid-19. However, en mitigation has come with substantial socioeconomic costs. In this paper, we demonstrate how individualized policies based on disease status can reduce transmission risk while minimizing impacts on economic outcomes. We design feedback control policies informed by optimal control solutions to modulate interaction rates of individuals based on the epidemic state. We identify personalized interaction rates such that recovered/immune individuals elevate their interactions and susceptible individuals remain at home before returning to pre-lockdown levels. As we show, feedback control policies can yield similar population-wide infection rates to total shutdown but with significantly lower economic costs and with greater robustness to uncertainty compared to optimal control policies. Our analysis shows that test-driven improvements in isolation efficiency of infectious individuals can inform disease-dependent interaction policies that mitigate transmission while enhancing the return of individuals to pre-pandemic economic activity.

Keywords

References

  1. BMJ. 2020 Apr 9;369:m1435 [PMID: 32273267]
  2. Nat Med. 2020 Jul;26(7):1033-1036 [PMID: 32398876]
  3. Lancet Public Health. 2020 May;5(5):e279-e288 [PMID: 32311320]
  4. Science. 2020 May 8;368(6491): [PMID: 32234805]
  5. Nat Commun. 2021 Dec 3;12(1):7063 [PMID: 34862373]
  6. Nature. 2020 Aug;584(7820):257-261 [PMID: 32512579]
  7. Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):14857-14863 [PMID: 32527856]
  8. Nature. 2020 Aug;584(7820):262-267 [PMID: 32512578]
  9. Math Biosci. 2020 Jul;325:108364 [PMID: 32360770]
  10. BMJ. 2020 Apr 27;369:m1557 [PMID: 32341002]
  11. Nat Med. 2020 May;26(5):672-675 [PMID: 32296168]
  12. Lancet. 2020 Jun 27;395(10242):1973-1987 [PMID: 32497510]
  13. Science. 2020 Jul 24;369(6502):413-422 [PMID: 32532802]
  14. Science. 2020 May 1;368(6490):493-497 [PMID: 32213647]
  15. Science. 2020 Jun 5;368(6495):1060-1061 [PMID: 32414781]
  16. J Infect. 2020 Jul;81(1):107-114 [PMID: 32335167]
  17. Lancet Respir Med. 2020 May;8(5):434-436 [PMID: 32203710]
  18. MMWR Morb Mortal Wkly Rep. 2020 Nov 20;69(46):1743-1747 [PMID: 33211678]
  19. N Engl J Med. 2020 Mar 26;382(13):1268-1269 [PMID: 32109011]
  20. Lancet. 2020 May 23;395(10237):1595-1598 [PMID: 32380041]
  21. Proc Natl Acad Sci U S A. 2020 Mar 31;117(13):7504-7509 [PMID: 32170017]
  22. Nat Med. 2020 Jun;26(6):823-824 [PMID: 32382153]
  23. Lancet Infect Dis. 2020 Jul;20(7):809-815 [PMID: 32330439]
  24. Nat Med. 2020 Jun;26(6):849-854 [PMID: 32382154]
  25. Math Biosci. 2020 Aug;326:108405 [PMID: 32565231]
  26. Sci Rep. 2022 Feb 3;12(1):1857 [PMID: 35115545]
  27. Proc Natl Acad Sci U S A. 2020 Dec 22;117(51):32764-32771 [PMID: 33262277]
  28. Science. 2020 Apr 24;368(6489):395-400 [PMID: 32144116]
  29. Sci Adv. 2021 Jan 1;7(1): [PMID: 33219112]
  30. Clin Infect Dis. 2021 May 4;72(9):1639-1641 [PMID: 32511704]

Grants

  1. R01 AI146592/NIAID NIH HHS