Advancing targeted protein degradation for cancer therapy.

Brandon Dale, Meng Cheng, Kwang-Su Park, H Ümit Kaniskan, Yue Xiong, Jian Jin
Author Information
  1. Brandon Dale: Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ORCID
  2. Meng Cheng: Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. ORCID
  3. Kwang-Su Park: Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ORCID
  4. H Ümit Kaniskan: Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ORCID
  5. Yue Xiong: Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. yue.xiong@cullgen.com.
  6. Jian Jin: Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA. jian.jin@mssm.edu. ORCID

Abstract

The human proteome contains approximately 20,000 proteins, and it is estimated that more than 600 of them are functionally important for various types of cancers, including nearly 400 non-enzyme proteins that are challenging to target by traditional occupancy-driven pharmacology. Recent advances in the development of small-molecule degraders, including molecular glues and heterobifunctional degraders such as proteolysis-targeting chimeras (PROTACs), have made it possible to target many proteins that were previously considered undruggable. In particular, PROTACs form a ternary complex with a hijacked E3 ubiquitin ligase and a target protein, leading to polyubiquitination and degradation of the target protein. The broad applicability of this approach is facilitated by the flexibility of individual E3 ligases to recognize different substrates. The vast majority of the approximately 600 human E3 ligases have not been explored, thus presenting enormous opportunities to develop degraders that target oncoproteins with tissue, tumour and subcellular selectivity. In this Review, we first discuss the molecular basis of targeted protein degradation. We then offer a comprehensive account of the most promising degraders in development as cancer therapies to date. Lastly, we provide an overview of opportunities and challenges in this exciting field.

References

  1. Mol Cell. 2006 Sep 1;23(5):709-21 [PMID: 16949367]
  2. Biophys J. 2010 Aug 4;99(3):736-44 [PMID: 20682250]
  3. Nat Cell Biol. 2003 Nov;5(11):1001-7 [PMID: 14528312]
  4. Cell Rep. 2018 Dec 4;25(10):2808-2820.e4 [PMID: 30517868]
  5. Cell. 2020 Dec 10;183(6):1714-1731.e10 [PMID: 33275901]
  6. Bioorg Med Chem Lett. 2019 Jul 1;29(13):1555-1564 [PMID: 31047748]
  7. Proc Natl Acad Sci U S A. 2018 Jul 31;115(31):E7285-E7292 [PMID: 30012605]
  8. Chem Rev. 2018 Feb 14;118(3):989-1068 [PMID: 28338320]
  9. Nat Chem Biol. 2019 Nov;15(11):1077-1084 [PMID: 31591562]
  10. J Mol Biol. 2013 Sep 9;425(17):3166-77 [PMID: 23806657]
  11. Nat Cancer. 2021 Apr;2(4):429-443 [PMID: 34568836]
  12. PLoS One. 2016 Oct 20;11(10):e0165005 [PMID: 27764181]
  13. Bioinformatics. 2019 Aug 15;35(16):2882-2884 [PMID: 30601939]
  14. J Adv Pract Oncol. 2015 Jul-Aug;6(4):361-5 [PMID: 26705496]
  15. J Med Chem. 2021 Mar 11;64(5):2829-2848 [PMID: 33606537]
  16. Cell. 2019 Aug 8;178(4):949-963.e18 [PMID: 31353221]
  17. ACS Cent Sci. 2019 Oct 23;5(10):1682-1690 [PMID: 31660436]
  18. Genes Dev. 1996 Sep 15;10(18):2251-64 [PMID: 8824585]
  19. Leukemia. 2019 Nov;33(11):2685-2694 [PMID: 30962579]
  20. N Engl J Med. 2016 Sep 22;375(12):1109-12 [PMID: 27653561]
  21. Br J Cancer. 2004 Mar;90 Suppl 1:S2-6 [PMID: 15094757]
  22. Nature. 2014 Aug 7;512(7512):49-53 [PMID: 25043012]
  23. Cell. 2011 Nov 23;147(5):1024-39 [PMID: 22118460]
  24. J Med Chem. 2020 Feb 13;63(3):1216-1232 [PMID: 31895569]
  25. Birth Defects Res C Embryo Today. 2015 Jun;105(2):140-56 [PMID: 26043938]
  26. Cell. 2011 Mar 4;144(5):646-74 [PMID: 21376230]
  27. Biomolecules. 2014 Oct 13;4(4):897-930 [PMID: 25314029]
  28. Cell Rep. 2019 Nov 5;29(6):1499-1510.e6 [PMID: 31693891]
  29. PLoS One. 2008 Jan 23;3(1):e1487 [PMID: 18213395]
  30. Genome Biol. 2011;12(4):220 [PMID: 21554755]
  31. Nat Struct Mol Biol. 2012 Sep;19(9):876-83 [PMID: 22902369]
  32. Nat Med. 2013 Feb;19(2):202-8 [PMID: 23291630]
  33. ACS Chem Biol. 2019 Oct 18;14(10):2215-2223 [PMID: 31553577]
  34. Lancet. 2004 May 29;363(9423):1802-11 [PMID: 15172781]
  35. Bioorg Med Chem Lett. 2008 Nov 15;18(22):5904-8 [PMID: 18752944]
  36. Nat Commun. 2021 Feb 10;12(1):920 [PMID: 33568647]
  37. Mol Syst Biol. 2019 Feb 18;15(2):e8503 [PMID: 30777892]
  38. Nat Rev Drug Discov. 2017 Feb;16(2):101-114 [PMID: 27885283]
  39. Cancer Cell. 2016 Sep 12;30(3):474-484 [PMID: 27622336]
  40. Nat Chem Biol. 2021 Feb;17(2):152-160 [PMID: 33199914]
  41. Sci Adv. 2020 Feb 21;6(8):eaay5154 [PMID: 32128407]
  42. J Med Chem. 2020 Apr 23;63(8):4069-4080 [PMID: 32223235]
  43. Cancer Cell. 2019 Nov 11;36(5):498-511.e17 [PMID: 31715132]
  44. Drugs. 2017 Apr;77(5):505-520 [PMID: 28205024]
  45. Cell Discov. 2019 Feb 5;5:10 [PMID: 30729032]
  46. Cancer Res. 2017 May 1;77(9):2476-2487 [PMID: 28209615]
  47. Cell Chem Biol. 2020 Jan 16;27(1):47-56.e15 [PMID: 31831267]
  48. Cell Chem Biol. 2018 Jan 18;25(1):67-77.e3 [PMID: 29129716]
  49. Nat Med. 2015 Dec;21(12):1491-6 [PMID: 26552009]
  50. Science. 2004 Feb 6;303(5659):844-8 [PMID: 14704432]
  51. Adv Drug Deliv Rev. 2016 Jun 1;101:42-61 [PMID: 27067608]
  52. ACS Chem Biol. 2019 Nov 15;14(11):2430-2440 [PMID: 31059647]
  53. Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):7124-9 [PMID: 27274052]
  54. Methods Mol Biol. 2016;1366:549-560 [PMID: 26585163]
  55. Annu Rev Biochem. 2018 Jun 20;87:697-724 [PMID: 29652515]
  56. Toxicol In Vitro. 2014 Aug;28(5):1026-35 [PMID: 24759803]
  57. Onco Targets Ther. 2019 Apr 16;12:2903-2910 [PMID: 31289443]
  58. Chem Commun (Camb). 2019 Jan 2;55(3):369-372 [PMID: 30540295]
  59. Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):18890-5 [PMID: 16365295]
  60. Cell. 2004 Nov 12;119(4):517-28 [PMID: 15537541]
  61. Nat Rev Cancer. 2014 Apr;14(4):233-47 [PMID: 24658274]
  62. Nat Chem Biol. 2020 Nov;16(11):1208-1217 [PMID: 32958952]
  63. Mol Cell. 2009 Oct 9;36(1):39-50 [PMID: 19818708]
  64. Neoplasia. 2020 Feb;22(2):111-119 [PMID: 31931431]
  65. EBioMedicine. 2019 Nov;49:40-54 [PMID: 31669221]
  66. J Med Chem. 2019 Dec 12;62(23):10897-10911 [PMID: 31730343]
  67. Chem Biol. 2012 May 25;19(5):629-37 [PMID: 22633414]
  68. Nature. 2003 Sep 18;425(6955):316-21 [PMID: 13679922]
  69. Nat Chem Biol. 2017 Jun;13(6):675-680 [PMID: 28437394]
  70. Nat Genet. 2006 Nov;38(11):1289-97 [PMID: 17013392]
  71. Cancer. 2018 Jul 1;124(13):2758-2765 [PMID: 29660836]
  72. Biochemistry. 2019 Feb 19;58(7):861-864 [PMID: 30681837]
  73. J Med Chem. 2019 Jan 24;62(2):448-466 [PMID: 30525597]
  74. J Biol Chem. 1999 Dec 10;274(50):35309-12 [PMID: 10585395]
  75. J Med Chem. 2014 Oct 23;57(20):8657-63 [PMID: 25166285]
  76. Science. 2017 Apr 28;356(6336): [PMID: 28302793]
  77. Princess Takamatsu Symp. 1991;22:239-48 [PMID: 1668886]
  78. Science. 2014 Jan 17;343(6168):301-5 [PMID: 24292625]
  79. Nat Rev Drug Discov. 2019 Dec;18(12):949-963 [PMID: 31666732]
  80. J Hematol Oncol. 2018 May 11;11(1):65 [PMID: 29747654]
  81. Nat Commun. 2019 Jan 10;10(1):131 [PMID: 30631068]
  82. Drug Discov Today Technol. 2019 Apr;31:61-68 [PMID: 31200861]
  83. Nature. 2019 Apr;568(7753):511-516 [PMID: 30971826]
  84. ACS Chem Biol. 2015 Aug 21;10(8):1831-7 [PMID: 26070106]
  85. Mol Cancer Ther. 2019 Jul;18(7):1302-1311 [PMID: 31064868]
  86. J Med Chem. 2020 Oct 22;63(20):11615-11638 [PMID: 33026811]
  87. ACS Med Chem Lett. 2010 May 13;1(2):85-89 [PMID: 20596242]
  88. Nature. 2003 Sep 18;425(6955):311-6 [PMID: 13679921]
  89. Blood. 2019 Feb 28;133(9):952-961 [PMID: 30545835]
  90. Bioorg Med Chem Lett. 2011 Sep 15;21(18):5442-5 [PMID: 21782422]
  91. Oncogenesis. 2018 Jan 24;7(1):8 [PMID: 29362397]
  92. Nature. 2016 Jun 15;534(7608):570-4 [PMID: 27309814]
  93. Genes Dev. 1998 Dec 15;12(24):3872-81 [PMID: 9869640]
  94. Annu Rev Biochem. 2001;70:503-33 [PMID: 11395416]
  95. Cell. 2014 Jun 19;157(7):1671-84 [PMID: 24949976]
  96. Nat Chem Biol. 2019 Jul;15(7):747-755 [PMID: 31209351]
  97. Nat Chem Biol. 2020 Nov;16(11):1170-1178 [PMID: 32778845]
  98. Cancer Res. 2019 Jan 1;79(1):251-262 [PMID: 30385614]
  99. J Cell Biol. 2011 Nov 28;195(5):839-53 [PMID: 22105350]
  100. Nat Chem Biol. 2020 Jan;16(1):7-14 [PMID: 31686031]
  101. Nat Chem Biol. 2018 Jul;14(7):706-714 [PMID: 29892083]
  102. Br J Haematol. 2014 Mar;164(6):811-21 [PMID: 24328678]
  103. Blood. 2011 Aug 11;118(6):1663-74 [PMID: 21673344]
  104. Cancer Res. 2008 May 1;68(9):3421-8 [PMID: 18451170]
  105. Semin Cancer Biol. 2016 Feb;36:105-19 [PMID: 26427329]
  106. ACS Chem Biol. 2018 Mar 16;13(3):553-560 [PMID: 29356495]
  107. Nature. 2020 Sep;585(7824):293-297 [PMID: 32494016]
  108. EMBO J. 2019 Mar 1;38(5): [PMID: 30723117]
  109. Cell. 1997 Oct 17;91(2):209-19 [PMID: 9346238]
  110. Blood. 2011 Nov 3;118(18):4771-9 [PMID: 21860026]
  111. Nature. 2002 Jun 27;417(6892):949-54 [PMID: 12068308]
  112. ACS Chem Biol. 2020 Sep 18;15(9):2316-2323 [PMID: 32697072]
  113. Nat Rev Drug Discov. 2006 Jul;5(7):596-613 [PMID: 16816840]
  114. Cell Div. 2016 Mar 09;11:1 [PMID: 27030794]
  115. J Antibiot (Tokyo). 1976 Jan;29(1):97-9 [PMID: 931798]
  116. Leuk Res. 2019 Nov;86:106222 [PMID: 31522038]
  117. Nat Rev Urol. 2020 Jun;17(6):339-350 [PMID: 32355326]
  118. Nature. 2016 Jun 22;535(7611):252-7 [PMID: 27338790]
  119. ACS Chem Biol. 2016 Dec 16;11(12):3328-3337 [PMID: 27704767]
  120. Cancer Sci. 2013 Nov;104(11):1492-8 [PMID: 23992566]
  121. Sci Adv. 2020 Feb 21;6(8):eaay5064 [PMID: 32128406]
  122. Future Med Chem. 2020 Jun;12(12):1155-1179 [PMID: 32431173]
  123. Nat Chem Biol. 2018 May;14(5):431-441 [PMID: 29581585]
  124. Signal Transduct Target Ther. 2019 Dec 24;4:64 [PMID: 31885879]
  125. Leukemia. 2019 Aug;33(8):2105-2110 [PMID: 30858551]
  126. Eur J Med Chem. 2018 May 10;151:304-314 [PMID: 29627725]
  127. Nat Chem Biol. 2019 Oct;15(10):937-944 [PMID: 31527835]
  128. Nature. 2006 Oct 5;443(7111):590-3 [PMID: 16964240]
  129. Angew Chem Int Ed Engl. 2019 May 6;58(19):6321-6326 [PMID: 30802347]
  130. Curr Opin Struct Biol. 2010 Dec;20(6):714-21 [PMID: 20880695]
  131. Nat Chem Biol. 2020 Nov;16(11):1189-1198 [PMID: 32572277]
  132. Clin Cancer Res. 2014 May 1;20(9):2249-56 [PMID: 24789032]
  133. Trends Cell Biol. 2020 Apr;30(4):290-302 [PMID: 32044173]
  134. Elife. 2018 Aug 01;7: [PMID: 30067223]
  135. Nat Cell Biol. 2006 Nov;8(11):1277-83 [PMID: 17041588]
  136. Curr Drug Targets. 2019;20(11):1091-1111 [PMID: 30947669]
  137. IUBMB Life. 2012 Apr;64(4):316-23 [PMID: 22362562]
  138. Commun Biol. 2020 Mar 20;3(1):140 [PMID: 32198438]
  139. Elife. 2020 Aug 17;9: [PMID: 32804079]
  140. J Biol Chem. 2018 May 4;293(18):6776-6790 [PMID: 29545311]
  141. Nature. 2002 Apr 18;416(6882):703-9 [PMID: 11961546]
  142. J Med Chem. 2017 Mar 9;60(5):1662-1664 [PMID: 28234469]
  143. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8554-9 [PMID: 11438690]
  144. Cell Death Differ. 2018 Jan;25(1):7-9 [PMID: 29125600]
  145. J Am Chem Soc. 2012 Mar 14;134(10):4465-8 [PMID: 22369643]
  146. Nat Chem Biol. 2015 Aug;11(8):611-7 [PMID: 26075522]
  147. Nat Chem Biol. 2014 Dec;10(12):1006-12 [PMID: 25326665]
  148. J Med Chem. 2018 Jan 25;61(2):599-618 [PMID: 28853884]
  149. Nature. 1995 Jan 5;373(6509):81-3 [PMID: 7800044]
  150. Nat Chem Biol. 2020 Nov;16(11):1199-1207 [PMID: 32747809]
  151. Cancer Cell. 2020 Oct 12;38(4):551-566.e11 [PMID: 32860752]
  152. J Med Chem. 2018 Jan 25;61(2):543-575 [PMID: 28594553]
  153. FEBS Lett. 2011 Apr 20;585(8):1147-52 [PMID: 21414315]
  154. Drug Discov Today. 2020 Oct;25(10):1793-1800 [PMID: 32693163]
  155. Neoplasia. 2020 Oct;22(10):522-532 [PMID: 32928363]
  156. Nature. 2015 Jul 9;523(7559):183-188 [PMID: 26131937]
  157. Biochem Biophys Res Commun. 2018 Oct 28;505(2):542-547 [PMID: 30274779]
  158. Nat Commun. 2019 Mar 29;10(1):1402 [PMID: 30926793]
  159. J Pharmacokinet Pharmacodyn. 2009 Feb;36(1):39-62 [PMID: 19199010]
  160. J Med Chem. 2019 Oct 24;62(20):9281-9298 [PMID: 31539241]
  161. Cell. 2015 Dec 3;163(6):1515-26 [PMID: 26627737]
  162. Angew Chem Int Ed Engl. 2012 Nov 12;51(46):11463-7 [PMID: 23065727]
  163. J Am Chem Soc. 2010 Apr 28;132(16):5820-6 [PMID: 20369832]
  164. N Engl J Med. 1999 Nov 18;341(21):1565-71 [PMID: 10564685]
  165. Cell Rep. 2018 Oct 2;25(1):80-94 [PMID: 30282040]
  166. J Med Chem. 2019 Feb 14;62(3):1420-1442 [PMID: 30990042]
  167. ACS Chem Biol. 2020 Jan 17;15(1):290-295 [PMID: 31846298]
  168. Nat Commun. 2020 Aug 26;11(1):4268 [PMID: 32848159]
  169. Cancer. 2011 Oct 15;117(20):4732-9 [PMID: 21456002]
  170. Nat Chem Biol. 2017 May;13(5):514-521 [PMID: 28288108]
  171. Genes Dev. 2006 Nov 1;20(21):2949-54 [PMID: 17079684]
  172. Nature. 2016 Apr 7;532(7597):127-30 [PMID: 26909574]
  173. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2156-61 [PMID: 9122164]
  174. J Med Chem. 2020 Dec 24;63(24):15883-15905 [PMID: 33284613]
  175. Nat Chem Biol. 2020 Feb;16(2):214-222 [PMID: 31819273]
  176. Nat Chem Biol. 2020 Jan;16(1):15-23 [PMID: 31819272]
  177. Nature. 2012 Jul 18;487(7407):308-9 [PMID: 22810693]
  178. Nature. 2020 Aug;584(7820):291-297 [PMID: 32728216]
  179. J Am Chem Soc. 2018 Dec 5;140(48):16428-16432 [PMID: 30427680]
  180. Annu Rev Cell Dev Biol. 2018 Oct 6;34:137-162 [PMID: 30110556]
  181. Nat Struct Mol Biol. 2014 Apr;21(4):301-7 [PMID: 24699078]
  182. J Biol Chem. 2012 Sep 14;287(38):32236-45 [PMID: 22815481]
  183. Cell Chem Biol. 2020 Jun 18;27(6):728-739.e9 [PMID: 32386596]
  184. Nature. 2020 Feb;578(7795):461-466 [PMID: 32051583]
  185. Cell. 2017 Jul 27;170(3):577-592.e10 [PMID: 28753431]
  186. Mol Cell. 2012 Sep 28;47(6):933-42 [PMID: 22885007]
  187. Adv Exp Med Biol. 2020;1217:211-223 [PMID: 31898230]
  188. J Med Chem. 2019 Jan 24;62(2):941-964 [PMID: 30629437]
  189. Sci Transl Med. 2015 Mar 18;7(279):279ra40 [PMID: 25787766]
  190. Genes Dev. 1999 Jul 15;13(14):1822-33 [PMID: 10421634]
  191. Nat Chem Biol. 2019 Jul;15(7):672-680 [PMID: 31178587]
  192. Cancer Sci. 2017 Aug;108(8):1657-1666 [PMID: 28556300]
  193. J Pain Palliat Care Pharmacother. 2008;22(1):45-46 [PMID: 28792816]
  194. Nat Med. 2014 Nov;20(11):1242-53 [PMID: 25375928]
  195. J Biol Chem. 2001 Aug 10;276(32):29748-53 [PMID: 11384984]
  196. Nat Chem Biol. 2011 Jul 03;7(8):538-43 [PMID: 21725302]
  197. Nature. 2012 Sep 6;489(7414):115-20 [PMID: 22842904]
  198. Cell. 2017 Jul 27;170(3):564-576.e16 [PMID: 28753430]
  199. Cancer Discov. 2020 Mar;10(3):333-334 [PMID: 32041739]
  200. Mol Cell Proteomics. 2003 Dec;2(12):1350-8 [PMID: 14525958]
  201. Nat Struct Mol Biol. 2010 Jan;17(1):105-11 [PMID: 19966799]
  202. Nat Immunol. 2015 Jun;16(6):546-53 [PMID: 25988886]
  203. Nat Med. 2019 Dec;25(12):1938-1947 [PMID: 31792461]
  204. Mol Cell. 2003 Sep;12(3):783-90 [PMID: 14527422]
  205. Genes Dev. 2004 Dec 15;18(24):3055-65 [PMID: 15601820]
  206. Cell Chem Biol. 2020 Jan 16;27(1):41-46.e17 [PMID: 31786184]
  207. Nat Rev Cancer. 2008 Jun;8(6):438-49 [PMID: 18500245]
  208. Science. 2014 Jan 17;343(6168):305-9 [PMID: 24292623]
  209. Nat Med. 2016 Feb;22(2):128-34 [PMID: 26845405]
  210. J Med Chem. 2018 Jan 25;61(2):535-542 [PMID: 28425720]
  211. Nat Struct Mol Biol. 2014 Sep;21(9):803-9 [PMID: 25108355]
  212. J Am Chem Soc. 2020 Feb 5;142(5):2193-2197 [PMID: 31927988]
  213. Angew Chem Int Ed Engl. 2020 Jan 20;59(4):1727-1734 [PMID: 31746102]
  214. J Am Chem Soc. 2020 Jul 8;142(27):11734-11742 [PMID: 32369353]
  215. Nat Chem Biol. 2018 Oct;14(10):981-987 [PMID: 30190590]
  216. Cancer Chemother Pharmacol. 2014 Sep;74(3):593-602 [PMID: 25053389]
  217. J Am Chem Soc. 2019 Nov 20;141(46):18370-18374 [PMID: 31566962]
  218. Biomark Res. 2020 Jan 9;8:2 [PMID: 31938543]
  219. J Med Chem. 2020 Sep 10;63(17):9977-9989 [PMID: 32787082]
  220. Signal Transduct Target Ther. 2020 Jul 27;5(1):129 [PMID: 32713946]
  221. Science. 2015 Jun 19;348(6241):1376-81 [PMID: 25999370]
  222. Trends Pharmacol Sci. 2020 Jul;41(7):464-474 [PMID: 32416934]
  223. Bioorg Med Chem Lett. 2018 Aug 15;28(15):2585-2592 [PMID: 29980357]
  224. Cell Death Dis. 2014 Nov 06;5:e1513 [PMID: 25375378]
  225. Science. 2010 Mar 12;327(5971):1345-50 [PMID: 20223979]
  226. J Med Chem. 2020 Dec 10;63(23):14562-14575 [PMID: 33058680]
  227. Mol Cell. 2019 Aug 22;75(4):849-858.e8 [PMID: 31442425]
  228. Biotherapy. 1992;4(3):205-14 [PMID: 1599804]
  229. Cell Chem Biol. 2018 Jan 18;25(1):78-87.e5 [PMID: 29129718]
  230. Annu Rev Biochem. 1998;67:425-79 [PMID: 9759494]
  231. Science. 2018 Nov 2;362(6414): [PMID: 30385546]
  232. Cell. 1997 Oct 17;91(2):221-30 [PMID: 9346239]
  233. Cold Spring Harb Perspect Med. 2016 Jun 01;6(6): [PMID: 27194168]
  234. Nat Chem Biol. 2019 Jul;15(7):737-746 [PMID: 31209349]

Grants

  1. R01 CA218600/NCI NIH HHS
  2. R01 GM067113/NIGMS NIH HHS
  3. R01 CA068377/NCI NIH HHS
  4. R01 CA260666/NCI NIH HHS
  5. R01 GM122749/NIGMS NIH HHS
  6. T32 GM007280/NIGMS NIH HHS
  7. R01 CA230854/NCI NIH HHS
  8. R01 HD088626/NICHD NIH HHS
  9. P30 CA196521/NCI NIH HHS

MeSH Term

Humans
Neoplasms
Proteins
Proteolysis
Ubiquitin-Protein Ligases
Ubiquitination

Chemicals

Proteins
Ubiquitin-Protein Ligases

Word Cloud

Created with Highcharts 10.0.0targetdegradersproteinproteinsE3degradationhumanapproximately600includingdevelopmentmolecularPROTACsligasesopportunitiestargetedcancerproteomecontains20000estimatedfunctionallyimportantvarioustypescancersnearly400non-enzymechallengingtraditionaloccupancy-drivenpharmacologyRecentadvancessmall-moleculegluesheterobifunctionalproteolysis-targetingchimerasmadepossiblemanypreviouslyconsideredundruggableparticularformternarycomplexhijackedubiquitinligaseleadingpolyubiquitinationbroadapplicabilityapproachfacilitatedflexibilityindividualrecognizedifferentsubstratesvastmajorityexploredthuspresentingenormousdeveloponcoproteinstissuetumoursubcellularselectivityReviewfirstdiscussbasisoffercomprehensiveaccountpromisingtherapiesdateLastlyprovideoverviewchallengesexcitingfieldAdvancingtherapy

Similar Articles

Cited By