A COVID-19 forecasting system using adaptive neuro-fuzzy inference.

Kim Tien Ly
Author Information
  1. Kim Tien Ly: School of Computer Science, University of Nottingham, Nottingham, United Kingdom.

Abstract

This article proposes an Adaptive Neuro-Fuzzy Inference System (ANFIS) to forecast the number of COVID-19 cases in the United Kingdom. With the combination of artificial neural network and fuzzy logic structure, the model is trained based on collected data. The study examines various factors of ANFIS to come up with an effective time series prediction model. The result indicates that Spain and Italy data can strengthen the predictive power of COVID-19 cases in the UK. It is suggested that the policymakers should adopt Adaptive Neuro-Fuzzy Inference System (ANFIS) to predict contagion effect during the COVID-19 pandemic.

Keywords

References

  1. PLoS One. 2017 Mar 24;12(3):e0174202 [PMID: 28339480]
  2. Financ Res Lett. 2021 Jan;38:101604 [PMID: 32837363]
  3. Financ Res Lett. 2020 Oct;36:101528 [PMID: 32837360]
  4. Financ Res Lett. 2020 Nov;37:101717 [PMID: 32837386]
  5. Financ Res Lett. 2020 Nov;37:101783 [PMID: 33013239]
  6. Financ Res Lett. 2020 Nov;37:101775 [PMID: 33013236]
  7. Financ Res Lett. 2020 Oct;36:101749 [PMID: 32908465]
  8. Financ Res Lett. 2020 Oct;36:101682 [PMID: 32837376]
  9. Financ Res Lett. 2021 Jan;38:101787 [PMID: 33024422]

Word Cloud

Created with Highcharts 10.0.0ANFISCOVID-19AdaptiveNeuro-FuzzyInferenceSystemcasesmodeldataserieseffectsystemarticleproposesforecastnumberUnitedKingdomcombinationartificialneuralnetworkfuzzylogicstructuretrainedbasedcollectedstudyexaminesvariousfactorscomeeffectivetimepredictionresultindicatesSpainItalycanstrengthenpredictivepowerUKsuggestedpolicymakersadoptpredictcontagionpandemicforecastingusingadaptiveneuro-fuzzyinferenceContagionCoronavirusForecastingTime

Similar Articles

Cited By (4)