Synthetic modified messenger RNA for therapeutic applications.

Minsong Gao, Qingyi Zhang, Xin-Hua Feng, Jianzhao Liu
Author Information
  1. Minsong Gao: MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
  2. Qingyi Zhang: MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
  3. Xin-Hua Feng: Life Sciences Institute, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.
  4. Jianzhao Liu: MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.; Life Sciences Institute, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.. Electronic address: liujz@zju.edu.cn.

Abstract

Synthetic modified messenger RNA (mRNA) has manifested great potentials for therapeutic applications such as vaccines and gene therapies, with the recent mRNA vaccines for global pandemic COVID-19 (corona virus disease 2019) attracting the tremendous attention. The chemical modifications and delivery vehicles of synthetic mRNAs are the two key factors for their in vivo therapeutic applications. Chemical modifications like nucleoside methylation endow the synthetic mRNAs with high stability and reduced stimulation of innate immunity. The development of scalable production of synthetic mRNA and efficient mRNA formulation and delivery strategies in recent years have remarkably advanced the field. It is worth noticing that we had limited knowledge on the roles of mRNA modifications in the past. However, the last decade has witnessed not only new discoveries of several naturally occurring mRNA modifications but also substantial advances in understanding their roles on regulating gene expression. It is highly necessary to reconsider the therapeutic system made by synthetic modified mRNAs and delivery vectors. In this review, we will mainly discuss the roles of various chemical modifications on synthetic mRNAs, briefly summarize the progresses of mRNA delivery strategies, and highlight some latest mRNA therapeutics applications including infectious disease vaccines, cancer immunotherapy, mRNA-based genetic reprogramming and protein replacement, mRNA-based gene editing. STATEMENT OF SIGNIFICANCE: The development of synthetic mRNA drug holds great promise but lies behind small molecule and protein drugs largely due to the challenging issues regarding its stability, immunogenicity and potency. In the last 15 years, these issues have beensubstantially addressed by synthesizing chemically modified mRNA and developing powerful delivery systems; the mRNA therapeutics has entered an exciting new era begun with the approved mRNA vaccines for the COVID-19 infection disease. Here, we provide recent progresses in understanding the biological roles of various RNA chemical modifications, in developing mRNA delivery systems, and in advancing the emerging mRNA-based therapeutic applications, with the purpose to inspire the community to spawn new ideas for curing diseases.

Keywords

References

  1. RSC Adv. 2018 Mar 28;8(22):12104-12115 [PMID: 35539419]
  2. ACS Nano. 2018 Oct 23;12(10):9815-9829 [PMID: 30256609]
  3. Philos Trans R Soc Lond B Biol Sci. 2018 Nov 5;373(1762): [PMID: 30397097]
  4. Immunity. 2005 Aug;23(2):165-75 [PMID: 16111635]
  5. Mol Ther. 2019 Apr 10;27(4):757-772 [PMID: 30803823]
  6. Angew Chem Int Ed Engl. 2018 Oct 8;57(41):13582-13586 [PMID: 30112821]
  7. Mol Ther. 2008 Nov;16(11):1833-40 [PMID: 18797453]
  8. Biomaterials. 2016 Mar;82:221-8 [PMID: 26763736]
  9. Virol Sin. 2020 Jun;35(3):259-262 [PMID: 32524253]
  10. Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14604-9 [PMID: 22908294]
  11. J Cell Biochem. 2017 Sep;118(9):2587-2598 [PMID: 28247949]
  12. Cell. 2014 Sep 25;159(1):148-162 [PMID: 25219674]
  13. Nat Struct Mol Biol. 2019 May;26(5):380-388 [PMID: 31061524]
  14. N Engl J Med. 2020 Oct 15;383(16):1544-1555 [PMID: 32722908]
  15. Gene Ther. 2021 Apr;28(3-4):117-129 [PMID: 33093657]
  16. Nanomedicine. 2016 Apr;12(3):711-722 [PMID: 26592962]
  17. Prog Nucleic Acid Res Mol Biol. 2002;71:187-222 [PMID: 12102555]
  18. Mol Ther. 2013 Nov;21(11):2087-101 [PMID: 23939024]
  19. Chem Sci. 2017 Jan 1;8(1):260-267 [PMID: 28451173]
  20. Nanomaterials (Basel). 2020 Feb 20;10(2): [PMID: 32093140]
  21. Nucleic Acids Res. 2016 Nov 16;44(20):9578-9590 [PMID: 27903882]
  22. Cell. 2015 Oct 22;163(3):759-71 [PMID: 26422227]
  23. Acta Biomater. 2018 Jul 15;75:358-370 [PMID: 29753914]
  24. Biomaterials. 2018 Feb;156:172-193 [PMID: 29197748]
  25. Biotechnol Adv. 2020 May - Jun;40:107534 [PMID: 32088327]
  26. Science. 2009 Jul 24;325(5939):433 [PMID: 19628861]
  27. Nat Biotechnol. 2007 Jul;25(7):778-85 [PMID: 17603475]
  28. Trends Pharmacol Sci. 2020 Oct;41(10):755-775 [PMID: 32893005]
  29. Genes (Basel). 2019 Jan 25;10(2): [PMID: 30691071]
  30. Nature. 2008 Jan 10;451(7175):141-6 [PMID: 18157115]
  31. Adv Mater. 2016 Apr 20;28(15):2939-43 [PMID: 26889757]
  32. Nature. 2020 Oct;586(7830):567-571 [PMID: 32756549]
  33. Cell. 2006 Aug 25;126(4):663-76 [PMID: 16904174]
  34. Mol Cell. 2019 Oct 3;76(1):96-109.e9 [PMID: 31474572]
  35. Mol Plant. 2017 Nov 6;10(11):1387-1399 [PMID: 28965832]
  36. Biochim Biophys Acta Gene Regul Mech. 2019 Mar;1862(3):329-342 [PMID: 30660758]
  37. Nat Biotechnol. 2008 May;26(5):561-9 [PMID: 18438401]
  38. Cytotechnology. 2017 Aug;69(4):655-665 [PMID: 28321779]
  39. Biomaterials. 2016 Dec;109:78-87 [PMID: 27680591]
  40. RNA. 2016 Sep;22(9):1454-66 [PMID: 27368341]
  41. Nucleic Acids Res. 2016 Jan 29;44(2):852-62 [PMID: 26578598]
  42. Stem Cells Transl Med. 2019 Aug;8(8):833-843 [PMID: 30891922]
  43. Cell. 2017 Mar 9;168(6):1114-1125.e10 [PMID: 28222903]
  44. Annu Rev Genet. 2020 Nov 23;54:309-336 [PMID: 32870730]
  45. Ann Oncol. 2013 Oct;24(10):2686-2693 [PMID: 23904461]
  46. Adv Mater. 2019 Feb;31(8):e1805116 [PMID: 30609147]
  47. Adv Drug Deliv Rev. 2021 Jan;168:246-258 [PMID: 33122087]
  48. Cell Res. 2018 Jun;28(6):616-624 [PMID: 29789545]
  49. Nat Commun. 2021 Mar 11;12(1):1582 [PMID: 33707441]
  50. Hum Gene Ther. 2006 Oct;17(10):1027-35 [PMID: 17007566]
  51. Nature. 2016 Jun 01;534(7607):396-401 [PMID: 27281205]
  52. J Am Chem Soc. 2009 May 13;131(18):6364-5 [PMID: 19385620]
  53. Curr Opin Chem Biol. 2016 Aug;33:108-16 [PMID: 27348156]
  54. Gene Ther. 2004 Oct;11 Suppl 1:S10-7 [PMID: 15454952]
  55. Biomark Res. 2020 Sep 14;8:43 [PMID: 32944246]
  56. PLoS Pathog. 2020 Jul 27;16(7):e1008795 [PMID: 32716975]
  57. Cell. 2020 Mar 19;180(6):1044-1066 [PMID: 32164908]
  58. J Control Release. 2018 May 28;278:110-121 [PMID: 29630987]
  59. Hum Gene Ther. 2011 Dec;22(12):1575-86 [PMID: 21838572]
  60. Biochim Biophys Acta Gene Regul Mech. 2019 Mar;1862(3):253-269 [PMID: 30572123]
  61. Angew Chem Int Ed Engl. 2017 Oct 23;56(44):13709-13712 [PMID: 28925033]
  62. J Clin Pharmacol. 2020 May;60(5):573-585 [PMID: 31777097]
  63. Gene Ther. 2019 Sep;26(9):363-372 [PMID: 31300730]
  64. Nat Immunol. 2011 Feb;12(2):137-43 [PMID: 21217758]
  65. Eur J Pharm Biopharm. 2001 Sep;52(2):165-72 [PMID: 11522482]
  66. Mol Ther. 2010 Dec;18(12):2112-20 [PMID: 20628358]
  67. Cureus. 2020 Jun 27;12(6):e8871 [PMID: 32754408]
  68. ACS Nano. 2017 Mar 28;11(3):2531-2544 [PMID: 28157292]
  69. Nat Chem Biol. 2016 May;12(5):311-6 [PMID: 26863410]
  70. BioDrugs. 2018 Feb;32(1):69-81 [PMID: 29392566]
  71. RNA. 2003 Sep;9(9):1108-22 [PMID: 12923259]
  72. Nat Microbiol. 2020 Apr;5(4):584-598 [PMID: 32015498]
  73. Regul Toxicol Pharmacol. 2020 Jun;113:104648 [PMID: 32240713]
  74. Bioorg Med Chem Lett. 2018 Aug 1;28(14):2451-2453 [PMID: 29907393]
  75. Annu Rev Immunol. 2014;32:461-88 [PMID: 24655297]
  76. Vaccine. 2019 May 31;37(25):3326-3334 [PMID: 31079849]
  77. Gene Ther. 2010 Aug;17(8):961-71 [PMID: 20410931]
  78. Nat Biotechnol. 2011 Feb;29(2):154-7 [PMID: 21217696]
  79. Adv Mater. 2017 Sep;29(33): [PMID: 28681930]
  80. Int J Pharm. 2017 Apr 15;521(1-2):249-258 [PMID: 28232268]
  81. Cureus. 2020 May 20;12(5):e8206 [PMID: 32577324]
  82. Genes (Basel). 2019 Jan 29;10(2): [PMID: 30699960]
  83. Nat Rev Drug Discov. 2020 Sep;19(9):578 [PMID: 32719377]
  84. Nat Rev Drug Discov. 2014 Oct;13(10):759-80 [PMID: 25233993]
  85. Science. 1990 Mar 23;247(4949 Pt 1):1465-8 [PMID: 1690918]
  86. PLoS One. 2019 Oct 16;14(10):e0223775 [PMID: 31618280]
  87. Biophys J. 2006 Oct 1;91(7):2508-16 [PMID: 16829556]
  88. Nat Biotechnol. 2016 Aug;34(8):808-10 [PMID: 27272387]
  89. Nucleic Acids Res. 2019 Apr 23;47(7):e42 [PMID: 30726958]
  90. Nature. 2020 Oct;586(7830):589-593 [PMID: 32785213]
  91. Nanomedicine (Lond). 2011 Jun;6(4):715-28 [PMID: 21718180]
  92. Trends Cell Biol. 2018 Feb;28(2):113-127 [PMID: 29103884]
  93. Proc Natl Acad Sci U S A. 2019 Nov 26;116(48):24075-24083 [PMID: 31712433]
  94. Wiley Interdiscip Rev RNA. 2015 Sep-Oct;6(5):471-99 [PMID: 26061157]
  95. Vet Pathol. 2018 Mar;55(2):341-354 [PMID: 29191134]
  96. Immunity. 2020 Oct 13;53(4):724-732.e7 [PMID: 32783919]
  97. J Immunol. 2008 Jan 1;180(1):309-18 [PMID: 18097032]
  98. J R Soc Interface. 2012 Mar 7;9(68):548-61 [PMID: 21831895]
  99. Angew Chem Int Ed Engl. 2016 Oct 24;55(44):13808-13812 [PMID: 27690187]
  100. Lancet. 2017 Sep 23;390(10101):1511-1520 [PMID: 28754494]
  101. Mol Ther. 2011 May;19(5):990-9 [PMID: 21189474]
  102. Adv Healthc Mater. 2018 Sep;7(17):e1800335 [PMID: 29923337]
  103. Theranostics. 2018 Oct 22;8(19):5276-5288 [PMID: 30555546]
  104. Biochemistry. 1996 Feb 27;35(8):2521-5 [PMID: 8611555]
  105. Nano Lett. 2018 Oct 10;18(10):6449-6454 [PMID: 30211557]
  106. RNA. 2018 Mar;24(3):268-272 [PMID: 29222116]
  107. J Am Heart Assoc. 2012 Dec;1(6):e003293 [PMID: 23316321]
  108. Science. 2016 Jan 15;351(6270):282-5 [PMID: 26816380]
  109. Biophys J. 1992 Oct;63(4):1176-81 [PMID: 19431848]
  110. NPJ Vaccines. 2021 Apr 9;6(1):50 [PMID: 33837212]
  111. Nat Struct Mol Biol. 2016 Feb;23(2):110-5 [PMID: 26751643]
  112. Nat Commun. 2020 May 15;11(1):2424 [PMID: 32415122]
  113. Elife. 2019 Dec 19;8: [PMID: 31855182]
  114. Cell. 2015 Nov 5;163(4):999-1010 [PMID: 26593424]
  115. Urol Oncol. 2021 Jan;39(1):63-71 [PMID: 32712138]
  116. Biochem Biophys Res Commun. 2016 May 6;473(3):743-51 [PMID: 26449459]
  117. Int J Biol Macromol. 2020 Nov 1;162:820-837 [PMID: 32599237]
  118. Life (Basel). 2019 Jul 09;9(3): [PMID: 31324016]
  119. Cancer Immunol Immunother. 2020 Dec;69(12):2613-2622 [PMID: 32594197]
  120. Bioorg Med Chem. 2016 Mar 15;24(6):1204-8 [PMID: 26899596]
  121. Nucleic Acids Res. 2011 Nov;39(21):9329-38 [PMID: 21813458]
  122. Adv Healthc Mater. 2018 Jul;7(14):e1800249 [PMID: 29761648]
  123. Adv Drug Deliv Rev. 2016 Apr 1;99(Pt A):129-137 [PMID: 26900977]
  124. Nucleic Acids Res. 2020 Apr 6;48(6):e35 [PMID: 32090264]
  125. RNA. 2004 Sep;10(9):1479-87 [PMID: 15317978]
  126. Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3351-E3360 [PMID: 29588418]
  127. New J Chem. 2010 Jan 1;34(5):993-1007 [PMID: 20711517]
  128. Nat Rev Drug Discov. 2018 Apr;17(4):261-279 [PMID: 29326426]
  129. Nature. 2020 Apr;580(7805):576-577 [PMID: 32346146]
  130. RNA. 2002 Mar;8(3):265-78 [PMID: 12003487]
  131. Biochim Biophys Acta. 2013 Jun-Jul;1829(6-7):590-603 [PMID: 23517755]
  132. Cancer Immunol Immunother. 2007 Oct;56(10):1577-87 [PMID: 17361438]
  133. Mol Ther. 2018 May 2;26(5):1215-1227 [PMID: 29605708]
  134. RNA. 2008 Jun;14(6):1119-31 [PMID: 18430890]
  135. Nat Methods. 2017 Jul;14(7):695-698 [PMID: 28504680]
  136. Crit Rev Biochem Mol Biol. 2021 Apr;56(2):137-148 [PMID: 33412937]
  137. RNA. 2007 Oct;13(10):1745-55 [PMID: 17720878]
  138. Expert Opin Biol Ther. 2021 Feb;21(2):201-218 [PMID: 32842798]
  139. Nat Struct Mol Biol. 2018 Mar;25(3):208-216 [PMID: 29459784]
  140. Science. 2018 Sep 28;361(6409):1346-1349 [PMID: 30262497]
  141. Nano Lett. 2017 Mar 8;17(3):1326-1335 [PMID: 28273716]
  142. Immunity. 2013 Jul 25;39(1):49-60 [PMID: 23890063]
  143. Nat Biotechnol. 2017 Dec;35(12):1179-1187 [PMID: 29131148]
  144. Cell. 1974 Nov;3(3):197-9 [PMID: 4373171]
  145. Sci Immunol. 2019 Sep 20;4(39): [PMID: 31541030]
  146. ACS Nano. 2017 Aug 22;11(8):7572-7586 [PMID: 28727419]
  147. Nature. 2017 Mar 9;543(7644):248-251 [PMID: 28151488]
  148. J Intern Med. 2012 Feb;271(2):183-92 [PMID: 22126373]
  149. Nature. 2014 Nov 6;515(7525):143-6 [PMID: 25192136]
  150. mBio. 2016 Sep 20;7(5): [PMID: 27651356]
  151. Nature. 1979 Jun 21;279(5715):692-6 [PMID: 450118]
  152. Biochemistry (Mosc). 2016 Jul;81(7):709-22 [PMID: 27449617]
  153. Cell Stem Cell. 2010 Nov 5;7(5):618-30 [PMID: 20888316]
  154. Adv Healthc Mater. 2018 Dec;7(23):e1800876 [PMID: 30398703]
  155. Mol Ther. 2020 Jul 8;28(7):1569-1584 [PMID: 32359470]
  156. Curr Opin Immunol. 2020 Aug;65:14-20 [PMID: 32244193]
  157. J Control Release. 2016 Apr 28;228:9-19 [PMID: 26941035]
  158. Nucleic Acids Res. 2017 Jun 2;45(10):6023-6036 [PMID: 28334758]
  159. Nature. 2020 Apr;580(7803):E7 [PMID: 32296181]
  160. J Control Release. 2015 Nov 10;217:337-44 [PMID: 26342664]
  161. Avicenna J Med Biotechnol. 2019 Jan-Mar;11(1):112-117 [PMID: 30800251]
  162. Beilstein J Org Chem. 2017 Dec 20;13:2819-2832 [PMID: 30018667]
  163. Mol Cell. 2019 Jun 20;74(6):1304-1316.e8 [PMID: 31031084]
  164. Cell. 2007 Nov 30;131(5):861-72 [PMID: 18035408]
  165. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019 Mar;11(2):e1530 [PMID: 29726120]
  166. Nucleic Acids Res. 2010 Sep;38(17):5884-92 [PMID: 20457754]
  167. Mol Ther. 2019 Apr 10;27(4):710-728 [PMID: 30846391]
  168. Bioconjug Chem. 2016 Mar 16;27(3):849-53 [PMID: 26906521]
  169. Mol Ther. 2019 Apr 10;27(4):729-734 [PMID: 30598301]
  170. Nat Immunol. 2020 May;21(5):501-512 [PMID: 32284591]
  171. Bioessays. 2016 Jan;38(1):27-40 [PMID: 26660621]
  172. Nature. 2016 Feb 25;530(7591):441-6 [PMID: 26863196]
  173. Clin Cancer Res. 2017 May 1;23(9):2255-2266 [PMID: 27815355]
  174. Nat Biotechnol. 2013 Sep;31(9):822-6 [PMID: 23792628]
  175. Biochim Biophys Acta. 2016 Dec;1863(12):3125-3147 [PMID: 27713097]
  176. Nat Biotechnol. 2013 Oct;31(10):898-907 [PMID: 24013197]
  177. Wiley Interdiscip Rev RNA. 2018 Jul;9(4):e1473 [PMID: 29624880]
  178. Nat Rev Genet. 2011 Jan;12(1):32-42 [PMID: 21102527]
  179. Pharmaceutics. 2020 Jan 28;12(2): [PMID: 32013049]
  180. Wiley Interdiscip Rev RNA. 2020 Sep;11(5):e1595 [PMID: 32301288]
  181. Science. 2013 Feb 15;339(6121):823-6 [PMID: 23287722]
  182. Mol Ther. 2019 Aug 7;27(8):1415-1423 [PMID: 31160223]
  183. Mol Ther. 2005 Jun;11(6):990-5 [PMID: 15922971]
  184. Antimicrob Agents Chemother. 2014 Aug;58(8):4318-27 [PMID: 24820090]
  185. Science. 2006 Nov 10;314(5801):994-7 [PMID: 17038590]
  186. Trends Biochem Sci. 2013 Apr;38(4):210-8 [PMID: 23391857]
  187. Eur J Pharm Biopharm. 2021 Apr;161:56-65 [PMID: 33582186]
  188. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6077-81 [PMID: 2762315]
  189. Nucleic Acid Ther. 2018 Oct;28(5):285-296 [PMID: 30088967]
  190. Mol Ther Methods Clin Dev. 2020 Jul 21;18:702-712 [PMID: 32913878]
  191. Mol Ther. 2017 Jan 4;25(1):92-101 [PMID: 28129133]
  192. Mol Pharm. 2020 Oct 5;17(10):3654-3684 [PMID: 32845639]
  193. Nat Biotechnol. 2011 Jul 07;29(8):731-4 [PMID: 21738127]
  194. N Engl J Med. 2020 Dec 17;383(25):2439-2450 [PMID: 33053279]
  195. Nat Biotechnol. 2012 Dec;30(12):1210-6 [PMID: 23159882]
  196. Cell. 2018 Dec 13;175(7):1872-1886.e24 [PMID: 30449621]
  197. Mol Ther Nucleic Acids. 2018 Sep 7;12:530-542 [PMID: 30195789]
  198. J Biomed Nanotechnol. 2018 Jul 1;14(7):1239-1251 [PMID: 29944098]
  199. Cell. 2020 Sep 3;182(5):1271-1283.e16 [PMID: 32795413]
  200. BMC Biol. 2020 Apr 15;18(1):40 [PMID: 32293435]
  201. Nucleic Acid Ther. 2016 Jun;26(3):173-82 [PMID: 26789413]
  202. Cell Res. 2017 Jan;27(1):154-157 [PMID: 27910851]

MeSH Term

COVID-19
COVID-19 Vaccines
Humans
Immunotherapy
RNA, Messenger
SARS-CoV-2

Chemicals

COVID-19 Vaccines
RNA, Messenger

Word Cloud

Created with Highcharts 10.0.0mRNAmodificationsdeliverysyntheticmodifiedtherapeuticapplicationsvaccinesRNAmRNAsrolesSyntheticgenerecentdiseasechemicalnewmRNA-basedmessengergreatCOVID-19stabilitydevelopmentstrategiesyearslastunderstandingvariousprogressestherapeuticsproteinissuesdevelopingsystemsmanifestedpotentialstherapiesglobalpandemiccoronavirus2019attractingtremendousattentionvehiclestwokeyfactorsvivoChemicallikenucleosidemethylationendowhighreducedstimulationinnateimmunityscalableproductionefficientformulationremarkablyadvancedfieldworthnoticinglimitedknowledgepastHoweverdecadewitnesseddiscoveriesseveralnaturallyoccurringalsosubstantialadvancesregulatingexpressionhighlynecessaryreconsidersystemmadevectorsreviewwillmainlydiscussbrieflysummarizehighlightlatestincludinginfectiouscancerimmunotherapygeneticreprogrammingreplacementeditingSTATEMENTOFSIGNIFICANCE:drugholdspromiseliesbehindsmallmoleculedrugslargelyduechallengingregardingimmunogenicitypotency15beensubstantiallyaddressedsynthesizingchemicallypowerfulenteredexcitingerabegunapprovedinfectionprovidebiologicaladvancingemergingpurposeinspirecommunityspawnideascuringdiseasesbaseTherapeutic

Similar Articles

Cited By