Delimiting cryptic species within the brown-banded bamboo shark, Chiloscyllium punctatum in the Indo-Australian region with mitochondrial DNA and genome-wide SNP approaches.

Ian R Tibbetts, Michael B Bennett, Christine L Dudgeon
Author Information
  1. Fahmi: School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia. fahmi@uqconnect.edu.au. ORCID
  2. Ian R Tibbetts: School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
  3. Michael B Bennett: School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
  4. Christine L Dudgeon: School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.

Abstract

BACKGROUND: Delimiting cryptic species in elasmobranchs is a major challenge in modern taxonomy due the lack of available phenotypic features. Employing stand-alone genetics in splitting a cryptic species may prove problematic for further studies and for implementing conservation management. In this study, we examined mitochondrial DNA and genome-wide nuclear single nucleotide polymorphisms (SNPs) in the brown-banded bambooshark, Chiloscyllium punctatum to evaluate potential cryptic species and the species-population boundary in the group.
RESULTS: Both mtDNA and SNP analyses showed potential delimitation within C. punctatum from the Indo-Australian region and consisted of four operational taxonomic units (OTUs), i.e. those from Indo-Malay region, the west coast of Sumatra, Lesser Sunda region, and the Australian region. Each OTU can be interpreted differently depending on available supporting information, either based on biological, ecological or geographical data. We found that SNP data provided more robust results than mtDNA data in determining the boundary between population and cryptic species.
CONCLUSION: To split a cryptic species complex and erect new species based purely on the results of genetic analyses is not recommended. The designation of new species needs supportive diagnostic morphological characters that allow for species recognition, as an inability to recognise individuals in the field creates difficulties for future research, management for conservation and fisheries purposes. Moreover, we recommend that future studies use a comprehensive sampling regime that encompasses the full range of a species complex. This approach would increase the likelihood of identification of operational taxonomic units rather than resulting in an incorrect designation of new species.

Keywords

References

  1. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  2. Sci Rep. 2018 Aug 7;8(1):11846 [PMID: 30087363]
  3. Mol Ecol. 2018 Feb;27(3):613-635 [PMID: 29334414]
  4. Mol Biol Rep. 2014 Jan;41(1):447-57 [PMID: 24293104]
  5. Syst Biol. 2012 Dec 1;61(6):1061-7 [PMID: 22780991]
  6. Zootaxa. 2017 Feb 20;4232(4):zootaxa.4232.4.11 [PMID: 28264358]
  7. Int J Genomics. 2016;2016:3460416 [PMID: 28025636]
  8. Proc Biol Sci. 2016 Oct 26;283(1841): [PMID: 27798300]
  9. Syst Biol. 2007 Dec;56(6):879-86 [PMID: 18027281]
  10. Syst Biol. 2006 Oct;55(5):859-67 [PMID: 17060206]
  11. Mol Ecol Resour. 2018 May;18(3):691-699 [PMID: 29266847]
  12. PLoS One. 2019 Mar 22;14(3):e0213864 [PMID: 30901342]
  13. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 [PMID: 29722887]
  14. Mol Biol Evol. 1999 Jan;16(1):37-48 [PMID: 10331250]
  15. Mol Biol Evol. 1996 Mar;13(3):510-24 [PMID: 8742640]
  16. Mol Ecol. 2018 Dec;27(24):5195-5213 [PMID: 30403418]
  17. PLoS One. 2013 Dec 31;8(12):e83785 [PMID: 24391827]
  18. Evolution. 2012 Mar;66(3):846-866 [PMID: 22380444]
  19. Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1607-1612 [PMID: 28137871]
  20. Mol Phylogenet Evol. 2010 May;55(2):572-9 [PMID: 20138218]
  21. Trends Ecol Evol. 2007 Mar;22(3):148-55 [PMID: 17129636]
  22. Curr Biol. 2016 Sep 26;26(18):2543-2549 [PMID: 27618261]
  23. Integr Environ Assess Manag. 2013 Jan;9(1):172-3 [PMID: 23281240]
  24. PLoS Comput Biol. 2019 Apr 8;15(4):e1006650 [PMID: 30958812]
  25. Nature. 2017 Sep 7;549(7670):82-85 [PMID: 28854164]
  26. Mol Ecol. 2013 Sep;22(17):4369-83 [PMID: 23855767]
  27. PLoS Comput Biol. 2014 Apr 10;10(4):e1003537 [PMID: 24722319]
  28. Zootaxa. 2016 Feb 23;4083(4):533-61 [PMID: 27394245]
  29. Trends Ecol Evol. 2004 Sep;19(9):464-9 [PMID: 16701308]
  30. J Hered. 2009 May-Jun;100(3):273-83 [PMID: 19304741]
  31. Malawi Med J. 2008 Jun;20(2):67-9 [PMID: 19537436]
  32. Zootaxa. 2013;3722:1-21 [PMID: 26171511]
  33. Bioinformatics. 1998;14(9):817-8 [PMID: 9918953]
  34. Trends Ecol Evol. 2018 Mar;33(3):153-163 [PMID: 29241941]
  35. J Fish Biol. 2012 Apr;80(5):1789-843 [PMID: 22497408]
  36. Conserv Biol. 2010 Oct;24(5):1212-8 [PMID: 20337690]
  37. Mol Biol Evol. 2012 Aug;29(8):1917-32 [PMID: 22422763]
  38. C R Biol. 2018 Feb;341(2):120-130 [PMID: 29415869]
  39. J Fish Biol. 2018 May;92(5):1487-1504 [PMID: 29635684]
  40. J Fish Biol. 2016 Nov;89(5):2219-2233 [PMID: 27600497]
  41. Curr Biol. 2015 Oct 5;25(19):R922-9 [PMID: 26439355]
  42. Evolution. 1985 Jul;39(4):783-791 [PMID: 28561359]
  43. Syst Biol. 2014 Jul;63(4):534-42 [PMID: 24627183]
  44. J Fish Biol. 2016 Mar;88(3):837-1037 [PMID: 26860638]
  45. Methods Mol Biol. 2012;888:67-89 [PMID: 22665276]
  46. Proc Natl Acad Sci U S A. 2015 Oct 27;112(43):13302-7 [PMID: 26460025]
  47. J Fish Biol. 2015 Feb;86(2):484-492 [PMID: 25546571]
  48. Evolution. 1984 Nov;38(6):1358-1370 [PMID: 28563791]
  49. Syst Biol. 2017 Jul 1;66(4):644-656 [PMID: 27798406]
  50. Zootaxa. 2019 May 07;4601(1):zootaxa.4601.1.1 [PMID: 31717249]
  51. Zootaxa. 2016 Aug 05;4147(4):377-402 [PMID: 27515624]
  52. J Biol. 2007;6(4):9 [PMID: 18177504]

Grants

  1. JLP:uc:sco-4.289/The Winifred Violet Scott Charitable Trust

MeSH Term

Animals
Australia
DNA, Mitochondrial
Indonesia
Phylogeny
Polymorphism, Single Nucleotide
Sharks

Chemicals

DNA, Mitochondrial

Word Cloud

Created with Highcharts 10.0.0speciescrypticregionpunctatumSNPdatacomplexnewDelimitingavailablestudiesconservationmanagementmitochondrialDNAgenome-widebrown-bandedChiloscylliumpotentialboundarymtDNAanalyseswithinIndo-AustralianoperationaltaxonomicunitsbasedresultsdesignationfutureBACKGROUND:elasmobranchsmajorchallengemoderntaxonomyduelackphenotypicfeaturesEmployingstand-alonegeneticssplittingmayproveproblematicimplementingstudyexaminednuclearsinglenucleotidepolymorphismsSNPsbamboosharkevaluatespecies-populationgroupRESULTS:showeddelimitationCconsistedfourOTUsieIndo-MalaywestcoastSumatraLesserSundaAustralianOTUcaninterpreteddifferentlydependingsupportinginformationeitherbiologicalecologicalgeographicalfoundprovidedrobustdeterminingpopulationCONCLUSION:spliterectpurelygeneticrecommendedneedssupportivediagnosticmorphologicalcharactersallowrecognitioninabilityrecogniseindividualsfieldcreatesdifficultiesresearchfisheriespurposesMoreoverrecommendusecomprehensivesamplingregimeencompassesfullrangeapproachincreaselikelihoodidentificationratherresultingincorrectbamboosharkapproachesElasmobranchGeneticsSpeciationSpecies

Similar Articles

Cited By