Developmental Changes in Pyramidal Cell Morphology in Multiple Visual Cortical Areas Using Cluster Analysis.

Reem Khalil, Ahmad Farhat, Paweł Dłotko
Author Information
  1. Reem Khalil: Biology, Chemistry, and Environmental Sciences Department, American University of Sharjah, Sharjah, United Arab Emirates.
  2. Ahmad Farhat: Dioscuri Centre in Topological Data Analysis, Mathematical Institute, Polish Academy of Sciences, Warsaw, Poland.
  3. Paweł Dłotko: Dioscuri Centre in Topological Data Analysis, Mathematical Institute, Polish Academy of Sciences, Warsaw, Poland.

Abstract

Neuronal morphology is characterized by salient features such as complex axonal and dendritic arbors. In the mammalian brain, variations in dendritic morphology among cell classes, brain regions, and animal species are thought to underlie known differences in neuronal function. In this work, we obtained a large dataset from http://neuromorpho.org/ comprising layer III pyramidal cells in different cortical areas of the ventral visual pathway (V1, V2, V4, TEO, and TE) of the macaque monkey at different developmental stages. We performed an in depth quantitative analysis of pyramidal cell morphology throughout development in an effort to determine which aspects mature early in development and which features require a protracted period of maturation. We were also interested in establishing if developmental changes in morphological features occur simultaneously or hierarchically in multiple visual cortical areas. We addressed these questions by performing principal component analysis (PCA) and hierarchical clustering analysis on relevant morphological features. Our analysis indicates that the maturation of pyramidal cell morphology is largely based on early development of topological features in most visual cortical areas. Moreover, the maturation of pyramidal cell morphology in V1, V2, V4, TEO, and TE is characterized by unique developmental trajectories.

Keywords

References

  1. Nature. 1996 Jul 25;382(6589):363-6 [PMID: 8684467]
  2. Invest Ophthalmol Vis Sci. 1998 Nov;39(12):2259-67 [PMID: 9804134]
  3. J Comp Neurol. 1991 Jul 1;309(1):115-28 [PMID: 1894765]
  4. Cereb Cortex. 2006 Mar;16(3):405-14 [PMID: 15944371]
  5. Brain Res Dev Brain Res. 1996 Oct 23;96(1-2):261-76 [PMID: 8922688]
  6. Science. 1986 Apr 11;232(4747):232-5 [PMID: 3952506]
  7. Curr Opin Neurobiol. 1994 Apr;4(2):200-6 [PMID: 8038577]
  8. Proc Biol Sci. 1999 Jul 7;266(1426):1367-74 [PMID: 10445291]
  9. Front Neuroanat. 2014 Aug 12;8:78 [PMID: 25161611]
  10. Cereb Cortex. 2015 Jun;25(6):1454-68 [PMID: 24323499]
  11. Brain Struct Funct. 2018 Jun;223(5):2303-2322 [PMID: 29476239]
  12. J Neurosci. 2000 Dec 15;20(24):RC117 [PMID: 11125016]
  13. J Vis. 2010 Sep 10;10(11):11 [PMID: 20884506]
  14. Cereb Cortex. 2008 Apr;18(4):915-29 [PMID: 17652464]
  15. J Comp Neurol. 1999 Dec 6;415(1):33-51 [PMID: 10540356]
  16. J Comp Neurol. 2009 Feb 20;512(6):726-46 [PMID: 19065632]
  17. Elife. 2020 Apr 14;9: [PMID: 32286229]
  18. Brain Struct Funct. 2013 Sep;218(5):1293-306 [PMID: 23052548]
  19. Vis Neurosci. 1996 May-Jun;13(3):529-38 [PMID: 8782380]
  20. Trends Neurosci. 2005 Oct;28(10):512-7 [PMID: 16126285]
  21. J Neurosci. 2007 Aug 29;27(35):9247-51 [PMID: 17728438]
  22. Brain Res. 2002 Jun 21;941(1-2):11-28 [PMID: 12031543]
  23. Front Neuroanat. 2011 Jul 21;5:42 [PMID: 21811440]
  24. J Comp Neurol. 2014 Oct 1;522(14):3208-28 [PMID: 24665018]
  25. Cereb Cortex. 2015 Dec;25(12):4839-53 [PMID: 26318661]
  26. Cereb Cortex. 1998 Apr-May;8(3):278-94 [PMID: 9617923]
  27. Nat Protoc. 2008;3(5):866-76 [PMID: 18451794]
  28. J Comp Neurol. 1983 Nov 20;221(1):60-90 [PMID: 6643747]
  29. Cereb Cortex. 1997 Jul-Aug;7(5):432-52 [PMID: 9261573]
  30. J Neurosci. 2009 Mar 11;29(10):3271-5 [PMID: 19279264]
  31. J Neuroradiol. 1991;18(4):291-307 [PMID: 1804933]
  32. Front Neuroanat. 2017 Mar 07;11:11 [PMID: 28326020]
  33. Brain Struct Funct. 2017 May;222(4):1847-1859 [PMID: 27696156]
  34. Brain Res Bull. 2001 Feb;54(3):255-66 [PMID: 11287130]
  35. Proc Natl Acad Sci U S A. 2005 Apr 19;102(16):5862-7 [PMID: 15824308]
  36. Cereb Cortex. 2000 Jul;10(7):671-83 [PMID: 10906314]
  37. Vis Neurosci. 2003 Sep-Oct;20(5):567-75 [PMID: 14977335]
  38. Vision Res. 1988;28(3):387-96 [PMID: 3188402]
  39. Front Cell Neurosci. 2017 Sep 11;11:272 [PMID: 28959187]
  40. J Comp Neurol. 1979 Aug 1;186(3):473-89 [PMID: 110852]
  41. J Comp Neurol. 2019 Feb 15;527(3):546-557 [PMID: 29664120]
  42. Prog Neurobiol. 1992 Dec;39(6):563-607 [PMID: 1410442]
  43. Exp Brain Res. 1989;75(1):53-64 [PMID: 2707356]
  44. Front Neurosci. 2017 Mar 13;11:118 [PMID: 28348514]
  45. Neuroscience. 2003;117(1):213-9 [PMID: 12605907]
  46. Brain Res. 1971 Dec 24;35(2):528-32 [PMID: 5002708]
  47. J Neurophysiol. 2003 Jun;89(6):3143-54 [PMID: 12612010]
  48. Front Syst Neurosci. 2020 Jun 09;14:29 [PMID: 32581733]
  49. J Neurophysiol. 2001 Feb;85(2):926-37 [PMID: 11160523]
  50. Proc Natl Acad Sci U S A. 2013 Jun 18;110 Suppl 2:10395-401 [PMID: 23754422]
  51. Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):12204-9 [PMID: 10518600]
  52. J Comp Neurol. 1983 Nov 20;221(1):91-7 [PMID: 6643748]
  53. Front Neural Circuits. 2016 Sep 21;10:74 [PMID: 27708563]
  54. Cereb Cortex. 1994 Jan-Feb;4(1):78-96 [PMID: 8180493]
  55. Front Neuroanat. 2014 Feb 10;8:4 [PMID: 24574977]
  56. J Neurocytol. 2002 Mar-Jun;31(3-5):317-35 [PMID: 12815250]
  57. J Comput Neurosci. 2007 Dec;23(3):349-98 [PMID: 17629781]
  58. Cereb Cortex. 2010 Jun;20(6):1398-408 [PMID: 19846470]

Word Cloud

Created with Highcharts 10.0.0morphologyfeaturescellpyramidalanalysisdevelopmentbraincorticalareasvisualV1developmentalmaturationcharacterizeddendriticmammaliandifferentV2V4TEOTEmonkeyearlymorphologicalPCAclusteringNeuronalsalientcomplexaxonalarborsvariationsamongclassesregionsanimalspeciesthoughtunderlieknowndifferencesneuronalfunctionworkobtainedlargedatasethttp://neuromorphoorg/comprisinglayerIIIcellsventralpathwaymacaquestagesperformeddepthquantitativethroughouteffortdetermineaspectsmaturerequireprotractedperiodalsointerestedestablishingchangesoccursimultaneouslyhierarchicallymultipleaddressedquestionsperformingprincipalcomponenthierarchicalrelevantindicateslargelybasedtopologicalMoreoveruniquetrajectoriesDevelopmentalChangesPyramidalCellMorphologyMultipleVisualCorticalAreasUsingClusterAnalysiscerebralcortexrefinement

Similar Articles

Cited By