Memristive Artificial Synapses for Neuromorphic Computing.

Wen Huang, Xuwen Xia, Chen Zhu, Parker Steichen, Weidong Quan, Weiwei Mao, Jianping Yang, Liang Chu, Xing'ao Li
Author Information
  1. Wen Huang: New Energy Technology Engineering Laboratory of Jiangsu Province and School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, People's Republic of China. wenhuang@njupt.edu.cn.
  2. Xuwen Xia: New Energy Technology Engineering Laboratory of Jiangsu Province and School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, People's Republic of China.
  3. Chen Zhu: College of Electronic and Optical Engineering and College of Microelectronics, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, People's Republic of China.
  4. Parker Steichen: Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195-2120, USA.
  5. Weidong Quan: New Energy Technology Engineering Laboratory of Jiangsu Province and School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, People's Republic of China.
  6. Weiwei Mao: New Energy Technology Engineering Laboratory of Jiangsu Province and School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, People's Republic of China.
  7. Jianping Yang: New Energy Technology Engineering Laboratory of Jiangsu Province and School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, People's Republic of China.
  8. Liang Chu: New Energy Technology Engineering Laboratory of Jiangsu Province and School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, People's Republic of China. chuliang@njupt.edu.cn.
  9. Xing'ao Li: New Energy Technology Engineering Laboratory of Jiangsu Province and School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, People's Republic of China. iamxali@njupt.edu.cn.

Abstract

Neuromorphic computing simulates the operation of biological brain function for information processing and can potentially solve the bottleneck of the von Neumann architecture. This computing is realized based on memristive hardware neural networks in which synaptic devices that mimic biological synapses of the brain are the primary units. Mimicking synaptic functions with these devices is critical in neuromorphic systems. In the last decade, electrical and optical signals have been incorporated into the synaptic devices and promoted the simulation of various synaptic functions. In this review, these devices are discussed by categorizing them into electrically stimulated, optically stimulated, and photoelectric synergetic synaptic devices based on stimulation of electrical and optical signals. The working mechanisms of the devices are analyzed in detail. This is followed by a discussion of the progress in mimicking synaptic functions. In addition, existing application scenarios of various synaptic devices are outlined. Furthermore, the performances and future development of the synaptic devices that could be significant for building efficient neuromorphic systems are prospected.

Keywords

References

  1. Sci Rep. 2019 Dec 19;9(1):19451 [PMID: 31857605]
  2. Chemphyschem. 2003 Oct 17;4(10):1041-7 [PMID: 14595999]
  3. Nano Converg. 2016;3(1):10 [PMID: 28191420]
  4. Nat Commun. 2017 May 12;8:15199 [PMID: 28497781]
  5. Adv Mater. 2019 Jan;31(3):e1806227 [PMID: 30485567]
  6. Adv Mater. 2016 Jul;28(25):4991-7 [PMID: 27119423]
  7. Science. 2015 Feb 27;347(6225):967-70 [PMID: 25636799]
  8. Nanotechnology. 2013 Sep 27;24(38):382001 [PMID: 23999572]
  9. ACS Nano. 2019 Feb 26;13(2):2634-2642 [PMID: 30730696]
  10. ACS Appl Mater Interfaces. 2018 Feb 21;10(7):6463-6470 [PMID: 29388420]
  11. Science. 2019 May 10;364(6440):570-574 [PMID: 31023890]
  12. Nature. 2016 Feb 11;530(7589):144-7 [PMID: 26863965]
  13. Molecules. 2019 Jul 28;24(15): [PMID: 31357695]
  14. Sci Rep. 2015 Oct 07;5:14741 [PMID: 26443381]
  15. Adv Mater. 2018 Feb;30(8): [PMID: 29318670]
  16. Nanomicro Lett. 2019 Feb 27;11(1):16 [PMID: 34137969]
  17. Nanoscale. 2019 Jan 17;11(3):1360-1369 [PMID: 30604810]
  18. Nat Mater. 2007 Nov;6(11):824-32 [PMID: 17972937]
  19. Nat Nanotechnol. 2019 Aug;14(8):776-782 [PMID: 31308498]
  20. ACS Appl Mater Interfaces. 2018 Oct 10;10(40):34370-34376 [PMID: 30207159]
  21. Adv Mater. 2017 Jul;29(27): [PMID: 28485032]
  22. Nano Lett. 2019 Mar 13;19(3):2044-2050 [PMID: 30698976]
  23. Nat Mater. 2011 Jun 26;10(8):591-5 [PMID: 21706012]
  24. ACS Nano. 2019 Dec 24;13(12):14262-14273 [PMID: 31790198]
  25. Nanomicro Lett. 2015;7(2):121-126 [PMID: 30464962]
  26. ACS Nano. 2018 Feb 27;12(2):1656-1663 [PMID: 29328623]
  27. Small. 2021 Mar;17(9):e2000041 [PMID: 32452636]
  28. Sci Adv. 2019 May 03;5(5):eaav3430 [PMID: 31058220]
  29. ACS Appl Mater Interfaces. 2019 Aug 7;11(31):28352-28358 [PMID: 31291719]
  30. Adv Mater. 2014 Nov 26;26(44):7493-8 [PMID: 25302744]
  31. Adv Mater. 2011 Dec 1;23(45):5377-82 [PMID: 21956256]
  32. Adv Mater. 2018 Sep;30(38):e1802883 [PMID: 30063261]
  33. Nat Commun. 2020 Aug 7;11(1):3936 [PMID: 32769980]
  34. Nat Nanotechnol. 2016 Aug;11(8):693-9 [PMID: 27183057]
  35. Nat Commun. 2019 Oct 18;10(1):4838 [PMID: 31628303]
  36. Small. 2019 Mar;15(11):e1900010 [PMID: 30740892]
  37. Adv Mater. 2015 May 6;27(17):2797-803 [PMID: 25786781]
  38. Adv Mater. 2020 Feb;32(7):e1905764 [PMID: 31850652]
  39. Nature. 2020 Nov;587(7832):72-77 [PMID: 33149289]
  40. Adv Mater. 2020 Apr;32(15):e1903558 [PMID: 31559670]
  41. Nat Mater. 2019 Feb;18(2):141-148 [PMID: 30559410]
  42. Neuropsychopharmacology. 2008 Jan;33(1):18-41 [PMID: 17728696]
  43. Nano Lett. 2012 Nov 14;12(11):5697-702 [PMID: 23039785]
  44. J Anim Sci. 1996 Aug;74(8):1990-5 [PMID: 8856455]
  45. Nat Commun. 2013;4:2072 [PMID: 23797631]
  46. Nano Lett. 2020 May 13;20(5):3378-3387 [PMID: 32212734]
  47. Science. 2011 Nov 4;334(6056):623-8 [PMID: 22053042]
  48. Nano Lett. 2010 Apr 14;10(4):1297-301 [PMID: 20192230]
  49. Nature. 2004 Oct 14;431(7010):796-803 [PMID: 15483601]
  50. ACS Appl Mater Interfaces. 2017 Sep 13;9(36):30197-30246 [PMID: 28682587]
  51. Neurobiol Learn Mem. 2015 Oct;124:3-18 [PMID: 25916668]
  52. Sci Adv. 2017 Sep 27;3(9):e1700160 [PMID: 28959725]
  53. Front Hum Neurosci. 2009 Nov 09;3:31 [PMID: 19915731]
  54. Sci Adv. 2016 Jun 17;2(6):e1501326 [PMID: 27386556]
  55. Nano Lett. 2012 May 9;12(5):2179-86 [PMID: 21668029]
  56. Research (Wash D C). 2019 Nov 11;2019:1618798 [PMID: 31922128]
  57. ACS Appl Mater Interfaces. 2018 Mar 7;10(9):8102-8109 [PMID: 29441792]
  58. ACS Nano. 2011 Sep 27;5(9):7669-76 [PMID: 21861506]
  59. Adv Mater. 2019 Aug;31(34):e1803831 [PMID: 30786064]
  60. Nat Mater. 2012 Oct;11(10):860-4 [PMID: 22983431]
  61. Small. 2018 Apr;14(15):e1800079 [PMID: 29504245]
  62. Nat Commun. 2018 Nov 30;9(1):5106 [PMID: 30504804]
  63. Nat Commun. 2014;5:3158 [PMID: 24452193]
  64. Adv Mater. 2019 Nov;31(47):e1803515 [PMID: 30761623]
  65. Sci Rep. 2015 May 05;5:10123 [PMID: 25941950]
  66. Nanomicro Lett. 2020 Feb 28;12(1):66 [PMID: 34138280]
  67. Nanoscale. 2016 Aug 7;8(29):14015-22 [PMID: 27143476]
  68. Nature. 2004 Oct 14;431(7010):775-81 [PMID: 15483598]
  69. Adv Mater. 2016 Jul;28(28):5916-22 [PMID: 27167384]
  70. Adv Mater. 2018 Dec;30(51):e1805454 [PMID: 30334296]
  71. Nat Mater. 2017 Apr;16(4):414-418 [PMID: 28218920]
  72. Adv Mater. 2017 Jul;29(28): [PMID: 28514064]
  73. Annu Rev Neurosci. 2005;28:503-32 [PMID: 16033324]
  74. Nano Lett. 2008 Jul;8(7):2056-62 [PMID: 18549278]
  75. Nat Commun. 2012 Mar 13;3:732 [PMID: 22415823]
  76. Nat Neurosci. 2000 Sep;3(9):919-26 [PMID: 10966623]
  77. Adv Mater. 2019 Dec;31(49):e1902761 [PMID: 31550405]
  78. Nature. 2018 Feb 21;554(7693):500-504 [PMID: 29469093]
  79. Nat Commun. 2017 Apr 03;8:14736 [PMID: 28368007]
  80. Adv Mater. 2009 Jul 13;21(25-26):2632-2663 [PMID: 36751064]
  81. ACS Nano. 2020 Apr 28;14(4):4559-4566 [PMID: 32271535]
  82. Nature. 2008 May 1;453(7191):80-3 [PMID: 18451858]
  83. Science. 2018 Jun 1;360(6392):998-1003 [PMID: 29853682]
  84. ACS Appl Mater Interfaces. 2020 May 20;12(20):23094-23101 [PMID: 32336082]
  85. Nanotechnology. 2018 Nov 16;29(46):464004 [PMID: 30246691]
  86. Neuron. 2017 May 3;94(3):447-464 [PMID: 28472650]
  87. J Phys Chem Lett. 2014 Mar 20;5(6):1004-11 [PMID: 26270980]
  88. ACS Nano. 2014 Sep 23;8(9):9636-48 [PMID: 25183018]
  89. Sci Bull (Beijing). 2019 Aug 15;64(15):1056-1066 [PMID: 36659765]
  90. ACS Appl Mater Interfaces. 2020 Sep 2;12(35):39487-39495 [PMID: 32805934]
  91. ACS Nano. 2018 Feb 27;12(2):1242-1249 [PMID: 29357245]
  92. Adv Mater. 2018 Jun;30(25):e1800220 [PMID: 29726076]
  93. Adv Mater. 2010 Jan 19;22(3):314-22 [PMID: 20217712]
  94. Nanoscale. 2018 Apr 19;10(15):6837-6843 [PMID: 29616272]
  95. Nat Nanotechnol. 2020 Jul;15(7):545-557 [PMID: 32647168]
  96. ACS Appl Mater Interfaces. 2018 Jun 27;10(25):21472-21480 [PMID: 29877073]
  97. Adv Mater. 2019 Feb;31(7):e1805284 [PMID: 30589113]

Word Cloud

Created with Highcharts 10.0.0devicessynapticNeuromorphiccomputingfunctionsbiologicalbrainbasedneuromorphicsystemselectricalopticalsignalsvariousstimulatedsynergeticpulsessimulatesoperationfunctioninformationprocessingcanpotentiallysolvebottleneckvonNeumannarchitecturerealizedmemristivehardwareneuralnetworksmimicsynapsesprimaryunitsMimickingcriticallastdecadeincorporatedpromotedsimulationreviewdiscussedcategorizingelectricallyopticallyphotoelectricstimulationworkingmechanismsanalyzeddetailfolloweddiscussionprogressmimickingadditionexistingapplicationscenariosoutlinedFurthermoreperformancesfuturedevelopmentsignificantbuildingefficientprospectedMemristiveArtificialSynapsesComputingElectricalOpticalPhotoelectriceffectsSynaptic

Similar Articles

Cited By (17)