One-step selective affinity purification and immobilization of His-tagged enzyme by recyclable magnetic nanoparticles.

Li-Jian Zhou, Rui-Fang Li, Xue-Yong Li, Ye-Wang Zhang
Author Information
  1. Li-Jian Zhou: The People's Hospital of Danyang Affiliated Danyang Hospital of Nantong University Danyang Jiangsu Province P. R. China.
  2. Rui-Fang Li: School of Pharmacy Jiangsu University Zhenjiang P. R. China.
  3. Xue-Yong Li: School of Pharmacy Jiangsu University Zhenjiang P. R. China.
  4. Ye-Wang Zhang: School of Pharmacy Jiangsu University Zhenjiang P. R. China.

Abstract

The NiFeO magnetic nanoparticles (NF-MNPs) were prepared for one-step selective affinity purification and immobilization of His-tagged recombinant glucose dehydrogenase (GluDH). The prepared nanoparticles were characterized by a Fourier-transform infrared spectrophotometer and microscopy. The immobilization and purification of His-tagged GluDH on NF-MNPs were investigated. The optimal immobilization conditions were obtained that mixed cell lysis and carriers in a ratio of 0.13 in pH 8.0 Tris-HCl buffer at 30℃ and incubated for 2 h. The highest activity recovery and protein bindings were 71.39% and 38.50 μg mg support, respectively. The immobilized GluDH exhibited high thermostability, pH-stability and it can retain more than 65% of the initial enzyme after 10 cycles for the conversion of glucose to gluconolactone. Comparing with a commercial Ni-NTA resin, the NF-MNPs displayed a higher specific affinity with His-tagged recombinant GluDH.

Keywords

References

  1. ACS Appl Mater Interfaces. 2013 Apr 10;5(7):2626-33 [PMID: 23470159]
  2. J Sci Food Agric. 2017 Mar;97(5):1412-1419 [PMID: 27378532]
  3. Anal Biochem. 1976 May 7;72:248-54 [PMID: 942051]
  4. Biosens Bioelectron. 2020 Dec 1;169:112601 [PMID: 32931991]
  5. J Hazard Mater. 2018 Apr 5;347:442-450 [PMID: 29353189]
  6. Indian J Microbiol. 2019 Jun;59(2):225-233 [PMID: 31031438]
  7. Chem Commun (Camb). 2015 May 25;51(42):8753-6 [PMID: 25704159]
  8. J Virol Methods. 2013 May;189(2):393-6 [PMID: 23523889]
  9. Colloids Surf B Biointerfaces. 2018 Apr 1;164:155-164 [PMID: 29413592]
  10. RSC Adv. 2020 Mar 20;10(19):11524-11534 [PMID: 35495316]
  11. Mikrochim Acta. 2020 Oct 21;187(11):619 [PMID: 33083850]
  12. J Microbiol Methods. 2013 Jan;92(1):59-63 [PMID: 23154041]
  13. Eng Life Sci. 2021 May 04;21(6):364-373 [PMID: 34140847]
  14. J Phys Chem B. 2008 Sep 11;112(36):11292-7 [PMID: 18707073]
  15. J Mater Chem B. 2013 Oct 14;1(38):5108-5113 [PMID: 32261102]
  16. Food Chem. 2019 Jun 15;283:1-10 [PMID: 30722847]
  17. ACS Appl Mater Interfaces. 2014;6(21):19092-9 [PMID: 25303145]
  18. J Med Eng Technol. 2007 Mar-Apr;31(2):152-6 [PMID: 17365439]
  19. Bioelectrochemistry. 2015 Dec;106(Pt A):56-63 [PMID: 25890695]
  20. Biosens Bioelectron. 2018 Jun 30;109:164-170 [PMID: 29554476]
  21. Bioresour Technol. 2020 Dec;317:124020 [PMID: 32827973]
  22. Mater Sci Eng C Mater Biol Appl. 2017 Nov 1;80:670-676 [PMID: 28866214]
  23. J Biol Chem. 1964 Nov;239:3630-9 [PMID: 14257587]
  24. Mater Sci Eng C Mater Biol Appl. 2013 May 1;33(4):1989-92 [PMID: 23498223]
  25. Adv Appl Microbiol. 1983;29:1-28 [PMID: 6650260]
  26. Biotechnol Lett. 2011 Jun;33(6):1075-84 [PMID: 21318632]
  27. Nanoscale. 2016 Mar 28;8(12):6728-38 [PMID: 26952722]
  28. Biotechnol Biofuels. 2020 Jun 03;13:100 [PMID: 32514312]
  29. Int J Biol Macromol. 2015 Mar;74:211-7 [PMID: 25542175]
  30. ACS Appl Mater Interfaces. 2017 Jan 25;9(3):2213-2222 [PMID: 28004579]
  31. Proteins. 2013 Nov;81(11):1857-61 [PMID: 23852738]
  32. Nature. 1975 Dec 18;258(5536):598-9 [PMID: 1678]
  33. Indian J Microbiol. 2019 Mar;59(1):105-108 [PMID: 30728638]
  34. PLoS One. 2014 Jan 14;9(1):e85844 [PMID: 24454935]
  35. Sensors (Basel). 2020 Jul 11;20(14): [PMID: 32664558]
  36. J Sep Sci. 2019 Feb;42(3):744-753 [PMID: 30488556]
  37. Food Chem. 2019 Jun 1;282:48-57 [PMID: 30711105]