Protein Family Content Uncovers Lineage Relationships and Bacterial Pathway Maintenance Mechanisms in DPANN Archaea.

Cindy J Castelle, Raphaël Méheust, Alexander L Jaffe, Kiley Seitz, Xianzhe Gong, Brett J Baker, Jillian F Banfield
Author Information
  1. Cindy J Castelle: Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, United States.
  2. Raphaël Méheust: Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, United States.
  3. Alexander L Jaffe: Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States.
  4. Kiley Seitz: Department of Marine Science, University of Texas Austin, Port Aransas, TX, United States.
  5. Xianzhe Gong: Department of Marine Science, University of Texas Austin, Port Aransas, TX, United States.
  6. Brett J Baker: Department of Marine Science, University of Texas Austin, Port Aransas, TX, United States.
  7. Jillian F Banfield: Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, United States.

Abstract

DPANN are small-celled archaea that are generally predicted to be symbionts, and in some cases are known episymbionts of other archaea. As the monophyly of the DPANN remains uncertain, we hypothesized that proteome content could reveal relationships among DPANN lineages, constrain genetic overlap with bacteria, and illustrate how organisms with hybrid bacterial and archaeal protein sets might function. We tested this hypothesis using protein family content that was defined in part using 3,197 genomes including 569 newly reconstructed genomes. Protein family content clearly separates the final set of 390 DPANN genomes from other archaea, paralleling the separation of Candidate Phyla Radiation (CPR) bacteria from all other bacteria. This separation is partly driven by hypothetical proteins, some of which may be symbiosis-related. Pacearchaeota with the most limited predicted metabolic capacities have Form II/III and III-like Rubisco, suggesting metabolisms based on scavenged nucleotides. Intriguingly, the Pacearchaeota and Woesearchaeota with the smallest genomes also tend to encode large extracellular murein-like lytic transglycosylase domain proteins that may bind and degrade components of bacterial cell walls, indicating that some might be episymbionts of bacteria. The pathway for biosynthesis of bacterial isoprenoids is widespread in Woesearchaeota genomes and is encoded in proximity to genes involved in bacterial fatty acids synthesis. Surprisingly, in some DPANN genomes we identified a pathway for synthesis of queuosine, an unusual nucleotide in tRNAs of bacteria. Other bacterial systems are predicted to be involved in protein refolding. For example, many DPANN have the complete bacterial DnaK-DnaJ-GrpE system and many Woesearchaeota and Pacearchaeota possess bacterial group I chaperones. Thus, many DPANN appear to have mechanisms to ensure efficient protein folding of both archaeal and laterally acquired bacterial proteins.

Keywords

References

  1. Science. 2006 Dec 22;314(5807):1933-5 [PMID: 17185602]
  2. Nature. 2015 Jan 1;517(7532):77-80 [PMID: 25317564]
  3. ISME J. 2012 Jan;6(1):81-93 [PMID: 21716304]
  4. Bioinformatics. 2015 May 15;31(10):1674-6 [PMID: 25609793]
  5. ISME J. 2009 Feb;3(2):159-67 [PMID: 18946497]
  6. Proc Natl Acad Sci U S A. 2019 Jul 16;116(29):14661-14670 [PMID: 31253704]
  7. J Bacteriol. 1999 Jan;181(2):434-43 [PMID: 9882656]
  8. Sci Rep. 2017 Jun 12;7(1):3289 [PMID: 28607432]
  9. Yakugaku Zasshi. 2003 May;123(5):267-83 [PMID: 12772584]
  10. Nat Rev Microbiol. 2018 Oct;16(10):629-645 [PMID: 30181663]
  11. Nat Microbiol. 2021 Mar;6(3):354-365 [PMID: 33495623]
  12. Cell. 2018 Mar 8;172(6):1181-1197 [PMID: 29522741]
  13. Nat Methods. 2017 Jun;14(6):587-589 [PMID: 28481363]
  14. J Bacteriol. 2008 Feb;190(3):1124-7 [PMID: 18055595]
  15. Science. 2017 Aug 11;357(6351): [PMID: 28798101]
  16. Nucleic Acids Res. 2016 Jul 8;44(W1):W242-5 [PMID: 27095192]
  17. Nat Rev Microbiol. 2011 Nov 08;10(1):13-26 [PMID: 22064560]
  18. Nat Commun. 2020 Aug 7;11(1):3939 [PMID: 32770105]
  19. Science. 2012 Sep 28;337(6102):1661-5 [PMID: 23019650]
  20. J Mol Biol. 2015 Sep 11;427(18):2919-30 [PMID: 25936650]
  21. Nat Microbiol. 2018 Jul;3(7):836-843 [PMID: 29807988]
  22. Bioinformatics. 2016 Feb 15;32(4):605-7 [PMID: 26515820]
  23. FEMS Microbiol Lett. 2019 Jan 1;366(2): [PMID: 30629179]
  24. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  25. Nat Rev Microbiol. 2014 Jun;12(6):438-48 [PMID: 24801941]
  26. Nat Commun. 2016 Jul 05;7:12115 [PMID: 27378076]
  27. Nat Methods. 2014 Nov;11(11):1144-6 [PMID: 25218180]
  28. Curr Biol. 2015 Mar 16;25(6):690-701 [PMID: 25702576]
  29. ISME J. 2017 Dec;11(12):2864-2868 [PMID: 28742071]
  30. Syst Biol. 2013 Nov;62(6):901-12 [PMID: 23925510]
  31. Nature. 2013 Jul 25;499(7459):431-7 [PMID: 23851394]
  32. Nat Microbiol. 2018 Mar;3(3):328-336 [PMID: 29379208]
  33. Nat Microbiol. 2017 Nov;2(11):1533-1542 [PMID: 28894102]
  34. Proc Natl Acad Sci U S A. 2010 May 11;107(19):8806-11 [PMID: 20421484]
  35. Nat Commun. 2016 Oct 24;7:13219 [PMID: 27774985]
  36. Front Microbiol. 2016 Feb 18;7:75 [PMID: 26925032]
  37. Bioinformatics. 2016 Jul 1;32(13):1933-42 [PMID: 27153688]
  38. Nat Biotechnol. 2019 Apr;37(4):420-423 [PMID: 30778233]
  39. Nat Biotechnol. 2020 Sep;38(9):1079-1086 [PMID: 32341564]
  40. Genome Biol. 2009;10(8):R85 [PMID: 19698104]
  41. Nucleic Acids Res. 2016 Jan 4;44(D1):D457-62 [PMID: 26476454]
  42. Mol Phylogenet Evol. 2018 Oct;127:46-54 [PMID: 29684598]
  43. J Bacteriol. 2008 Mar;190(5):1743-50 [PMID: 18165302]
  44. Bioinformatics. 2016 Feb 1;32(3):345-53 [PMID: 26458889]
  45. Environ Microbiol Rep. 2016 Apr;8(2):210-7 [PMID: 26711582]
  46. Bioinformatics. 2012 Jun 1;28(11):1420-8 [PMID: 22495754]
  47. Nat Commun. 2014 Nov 26;5:5497 [PMID: 25425419]
  48. J Biol Chem. 2004 Jan 9;279(2):1090-9 [PMID: 14576149]
  49. Bioinformatics. 1998;14(9):755-63 [PMID: 9918945]
  50. Mol Biol Evol. 2018 Feb 1;35(2):518-522 [PMID: 29077904]
  51. Mol Biol Evol. 2015 Jan;32(1):268-74 [PMID: 25371430]
  52. J Mol Biol. 2001 Jan 19;305(3):567-80 [PMID: 11152613]
  53. Genome Res. 2015 Jul;25(7):1043-55 [PMID: 25977477]
  54. Bioinformatics. 2009 Aug 1;25(15):1972-3 [PMID: 19505945]
  55. Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301 [PMID: 22127870]
  56. BMC Biol. 2020 Jun 19;18(1):69 [PMID: 32560683]
  57. Nucleic Acids Res. 2017 Jan 4;45(D1):D271-D281 [PMID: 27794042]
  58. Bioinformatics. 2019 Nov 15;: [PMID: 31730192]
  59. ISME J. 2017 Nov;11(11):2407-2425 [PMID: 28777382]
  60. Nat Commun. 2020 Oct 30;11(1):5494 [PMID: 33127895]
  61. BMC Evol Biol. 2012 Nov 26;12:226 [PMID: 23181628]
  62. PeerJ. 2015 Aug 27;3:e1165 [PMID: 26336640]
  63. Nat Commun. 2019 Sep 13;10(1):4173 [PMID: 31519891]
  64. Nature. 2002 May 2;417(6884):63-7 [PMID: 11986665]

Word Cloud

Created with Highcharts 10.0.0DPANNbacterialgenomesbacteriaproteinarchaeapredictedcontentfamilyproteinsPacearchaeotaWoesearchaeotamanyepisymbiontsarchaealmightusingProteinseparationmaypathwaygenesinvolvedsynthesissmall-celledgenerallysymbiontscasesknownmonophylyremainsuncertainhypothesizedproteomerevealrelationshipsamonglineagesconstraingeneticoverlapillustrateorganismshybridsetsfunctiontestedhypothesisdefinedpart3197including569newlyreconstructedclearlyseparatesfinalset390parallelingCandidatePhylaRadiationCPRpartlydrivenhypotheticalsymbiosis-relatedlimitedmetaboliccapacitiesFormII/IIIIII-likeRubiscosuggestingmetabolismsbasedscavengednucleotidesIntriguinglysmallestalsotendencodelargeextracellularmurein-likelytictransglycosylasedomainbinddegradecomponentscellwallsindicatingbiosynthesisisoprenoidswidespreadencodedproximityfattyacidsSurprisinglyidentifiedqueuosineunusualnucleotidetRNAssystemsrefoldingexamplecompleteDnaK-DnaJ-GrpEsystempossessgroupchaperonesThusappearmechanismsensureefficientfoldinglaterallyacquiredFamilyContentUncoversLineageRelationshipsBacterialPathwayMaintenanceMechanismsArchaeaphylogeny

Similar Articles

Cited By