Exploitation of nanocrystal suspension as an effective oral formulation for oxfendazole.

Yuzhu Sun, Dongmei Chen, Ying Zhao, Kaixiang Zhou, Bao Zhang, Haiting Wang, Shuyu Xie
Author Information
  1. Yuzhu Sun: National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, 430070, Hubei, China.
  2. Dongmei Chen: National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, 430070, Hubei, China.
  3. Ying Zhao: National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, 430070, Hubei, China.
  4. Kaixiang Zhou: National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, 430070, Hubei, China.
  5. Bao Zhang: National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, 430070, Hubei, China.
  6. Haiting Wang: Qilu Animal Health Products Co. Ltd. No, 243 Gongye North Road, Shandong, 250100, Jinan, People's Republic of China.
  7. Shuyu Xie: National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, 430070, Hubei, China. snxsy1@126.com.

Abstract

An oxfendazole (OFZ) nanocrystal suspension was prepared by acid-base neutralization and crystallization combined with ultrasonic dispersion to overcome the challenge of its poor oral bioavailability. The nanosuspensions were screened and optimized by single-factor experiments and an orthogonal design using size and appearance as indices. The morphology (differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD)) properties and pharmacokinetics of the best formulation were further developed. The results showed that the best cosolvent and stabilizer were malic acid and hydrogenated castor oil polyoxyethylene ether (HEL-40), respectively. Scanning electron microscopy demonstrated that the oxfendazole nanocrystals are irregular sheets with relative uniformity. The prepared nanocrystals have an average particle diameter of 431 ± 18 nm, a polydispersity index (PDI) of 0.376 ± 0.128, a zeta potential of 2.30 ± 0.44 mV, and a sedimentation coefficient of 0.993. The equilibrium solubility of nanocrystals in different solvents was significantly improved by 2.02-109.99-fold compared to OFZ crude. In 0.5% SDS-PBS (pH 2) and 0.5% SDS-PBS (pH 8) solution, oxfendazole nanocrystals were completely released within 5 min, while the OFZ crude only released 60.26% and 28.31%, respectively. The pharmacokinetics showed that the C, T, and AUC of OFZ nanosuspension and OFZ granules in rats after oral dosage at 50 mg/kg were 4.23 and 13.63 μg/mL, 2.04 and 1.67 h, and 111.36 and 295.80 μg*h/mL, respectively. The relative bioavailability of the oxfendazole nanosuspension was 265.61% compared to the OFZ granules. These results showed that the nanosuspension might be a promising oral formulation for the hardly soluble OFZ.

Keywords

References

  1. Gokbulut C, Bilgili A, Hanedan B, Mckellar QA. Comparative plasma disposition of fenbendazole, oxfendazole and albendazole in dogs. Vet Parasitol. 2007;148:279–87. [DOI: 10.1016/j.vetpar.2007.06.028]
  2. Blanton RE, Wachira TM, Zeyhle EE, Njoroge EM, Magambo JK, Schantz PM. Oxfendazole treatment for cystic hydatid disease in naturally infected animals. Antimicrob Agents Chemother. 1998;42:601–5. [DOI: 10.1128/AAC.42.3.601]
  3. Ngomuo AJ, Marriner SE, Bogan JA. The pharmacokinetics of fenbendazole and oxfendazole in cattle. Vet Res Commun. 1984;8:187–93. [DOI: 10.1007/BF02214711]
  4. Duwel D, Kirsch R, Reisenleiter R. The efficacy of fenbendazole in the control of trematodes and cestodes. Vet Rec. 1975;97:371. [DOI: 10.1136/vr.97.19.371-a]
  5. Davies JA, Schwalbach LM. A study to evaluate the field efficacy of ivermectin, fenbendazole and pyrantel pamoate, with preliminary observations on the efficacy of doramectin, as anthelmintics in horses. J S Afr Vet Assoc. 2000;71:144–7. [DOI: 10.4102/jsava.v71i3.703]
  6. Barr SC, Bowman DD, Heller RL, Erb HN. Efficacy of albendazole against giardiasis in dogs. Am J Vet Res. 1993;54:926–8. [PMID: 8323064]
  7. Düwel D. Fenbendazole. II. Biological properties and activity. Pestic Sci 2010;8:550–5.
  8. Gavidia CM, Gonzalez AE, Lopera L, Jayashi C, Angelats R, Barron EA, Ninaquispe B, Villarreal L, Garcia HH, Verastegui MR, Gilman RH. Evaluation of nitazoxanide and oxfendazole efficacy against cystic echinococcosis in naturally infected sheep. Am J Trop Med Hyg. 2009;80:367–72. [DOI: 10.4269/ajtmh.2009.80.367]
  9. Ploeger HW, Everts RR. Alarming levels of anthelmintic resistance against gastrointestinal nematodes in sheep in the Netherlands. Vet Parasitol. 2018;262:11–5. [DOI: 10.1016/j.vetpar.2018.09.007]
  10. Bauer C. Comparative efficacy of praziquantel, albendazole, febantel and oxfendazole against Moniezia expansa. Vet Rec. 1990;127:353–4. [PMID: 2260242]
  11. Gonzales AE, Garcia HH, Gilman RH, Gavidia CM, Tsang VC, Bernal T, Falcon N, Romero M, Lopez-Urbina MT. Effective, single-dose treatment or porcine cysticercosis with oxfendazole. Am J Trop Med Hyg. 1996;54:391–4. [DOI: 10.4269/ajtmh.1996.54.391]
  12. Gonzalez AE, Falcon N, Gavidia C, Garcia HH, Tsang VC, Bernal T, Romero M, Gilman RH. Treatment of porcine cysticercosis with oxfendazole: a dose-response trial. Vet Rec. 1997;141:420–2. [DOI: 10.1136/vr.141.16.420]
  13. An G, Murry DJ, Gajurel K, Bach T, Deye G, Stebounova LV, Codd EE, Horton J, Gonzalez AE, Garcia HH, Ince D, Hodgson-Zingman D, Nomicos EYH, Conrad T, Kennedy J, Jones W, Gilman RH, Winokur P. Pharmacokinetics, safety, and tolerability of oxfendazole in healthy volunteers: a randomized, placebo-controlled first-in-human single-dose escalation study. Antimicrob Agents Chemother. 2019. https://doi.org/10.1128/aac.02255-18 .
  14. Lui CY, Amidon GL, Berardi RR, Fleisher D, Youngberg C, Dressman JB. Comparison of gastrointestinal pH in dogs and humans: implications on the use of the beagle dog as a model for oral absorption in humans. J Pharm Sci. 1986;75:271–4. [DOI: 10.1002/jps.2600750313]
  15. Ortiz P, Terrones S, Cabrera M, Hoban C, Ceballos L, Moreno L, Canton C, Donadeu M, Lanusse C, Alvarez L. Oxfendazole flukicidal activity in pigs. Acta Trop. 2014;136:10–3. [DOI: 10.1016/j.actatropica.2014.03.024]
  16. Joshi K, Chandra A, Jain K, Talegaonkar S. Nanocrystalization: an emerging technology to enhance the bioavailability of poorly soluble drugs. Pharm Nanotechnol. 2019;7:259–78. [DOI: 10.2174/2211738507666190405182524]
  17. Lu Y, Lv Y, Li T. Hybrid drug nanocrystals. Adv Drug Deliv Rev. 2019. https://doi.org/10.1016/j.addr.2019.06.006 . [DOI: 10.1016/j.addr.2019.06.006]
  18. Sattar A, Chen D, Jiang L, Pan Y, Tao Y, Huang L, Liu z, Xie S, Yuan Z. Preparation, characterization and pharmacokinetics of cyadox nanosuspension. Sci Rep, 2017; 7(1):2289.
  19. Gao Y, Qian S Fau – Zhang J, Zhang J. Physicochemical and pharmacokinetic characterization of a spray-dried cefpodoxime proxetil nanosuspension. Chem Pharm Bull (Tokyo). 2010;58:912–7.
  20. Kanthamneni N, Valiveti S, Patel M, Xia H, Tseng YC. Enhanced bioavailability of danazol nanosuspensions by wet milling and high-pressure homogenization. Int J Pharm Investig. 2016;6:218–24. [DOI: 10.4103/2230-973X.195931]
  21. Kulkarni SA, Myerson AS. Methods for nano-crystals preparation. Engineering Crystallography: From Molecule to Crystal to Functional Form. 2017. https://doi.org/10.1007/978-94-024-1117-1_16 . [DOI: 10.1007/978-94-024-1117-1_16]
  22. Fontana G, Pitarresi G, Tomarchio V, Carlisi B, San Biagio PL. Preparation, characterization and in vitro antimicrobial activity of ampicillin-loaded polyethylcyanoacrylate nanoparticles. Biomaterials. 1998;19:1009–17. [DOI: 10.1016/S0142-9612(97)00246-9]
  23. Chen D, Tao Y, Liu Z, Liu Z, Huang L, Wang Y, Pan Y, Peng D, Dai M, Yuan Z. Development of a high-performance liquid chromatography method to monitor the residues of benzimidazoles in bovine milk. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878:2928–32. [DOI: 10.1016/j.jchromb.2010.08.029]
  24. Deimede VA, Fragou KV, Koulouri EG, Kallitsis JK, Voyiatzis GA. Miscibility behavior of polyamide 11/sulfonated polysulfone blends using thermal and spectroscopic techniques. Polymer. 2000;41:9095–101. [DOI: 10.1016/S0032-3861(00)00289-5]
  25. Müller RH, Peters K. Nanosuspensions for the formulation of poorly soluble drugs: I. Preparation by a size-reduction technique. International Journal of Pharmaceutics. 1998;160:229–37.
  26. Peters K, Leitzke S, Diederichs JE, Borner K, Hahn H, Müller RH, Ehlers S. Preparation of a clofazimine nanosuspension for intravenous use and evaluation of its therapeutic efficacy in murine Mycobacterium avium infection. J Antimicrob Chemother. 2000;45:77–83. [DOI: 10.1093/jac/45.1.77]
  27. Li W, Quan P, Zhang Y, Cheng J, Liu J, Cun D, Xiang R, Fang L. Influence of drug physicochemical properties on absorption of water insoluble drug nanosuspensions. Int J Pharm. 2014;460:13–23. [DOI: 10.1016/j.ijpharm.2013.10.038]
  28. Lee J, Lee SJ, Choi JY, Yoo JY, Ahn CH. Amphiphilic amino acid copolymers as stabilizers for the preparation of nanocrystal dispersion. Eur J Pharm Sci. 2005;24:441–9. [DOI: 10.1016/j.ejps.2004.12.010]
  29. Mcclements DJ, Li Y. Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components. Adv Colloid Interface Sci. 2010;159:213–28. [DOI: 10.1016/j.cis.2010.06.010]
  30. Storm G, Belliot SO, Daemen T, Lasic DD. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev. 1995;17:31–48. [DOI: 10.1016/0169-409X(95)00039-A]
  31. Lopes MA, Abrahim-Vieira B, Oliveira C, Fonte P, Souza AM, Lira T, Sequeira JA, Rodrigues CR, Cabral LM, Sarmento B, Seiça R, Veiga F, Ribeiro AJ. Probing insulin bioactivity in oral nanoparticles produced by ultrasonication-assisted emulsification/internal gelation. Int J Nanomedicine. 2015;10:5865–80. [PMID: 26425087]
  32. Santos AC, Cunha J, Veiga F, Cordeiro-Da-Silva A, Ribeiro AJ. Ultrasonication of insulin-loaded microgel particles produced by internal gelation: impact on particle’s size and insulin bioactivity. Carbohydr Polym. 2013;98:1397–408. [DOI: 10.1016/j.carbpol.2013.06.063]
  33. Kim HY, Han JA, Kweon DK, Park JD, Lim ST. Effect of ultrasonic treatments on nanoparticle preparation of acid-hydrolyzed waxy maize starch. Carbohydr Polym. 2013;93:582–8. [DOI: 10.1016/j.carbpol.2012.12.050]
  34. Delegard CH. Ostwald ripening and its effect on PuO2 particle size in Hanford tank waste. Office of Scientific & Technical Information Technical Reports. 2011. https://doi.org/10.2172/1027695 . [DOI: 10.2172/1027695]

MeSH Term

Administration, Oral
Animals
Benzimidazoles
Biological Availability
Calorimetry, Differential Scanning
Nanoparticles
Particle Size
Rats
Solubility
Suspensions
X-Ray Diffraction

Chemicals

Benzimidazoles
Suspensions
oxfendazole

Word Cloud

Created with Highcharts 10.0.0OFZoxfendazoleoralnanocrystals02formulationshowedrespectivelynanosuspensionnanocrystalsuspensionpreparedbioavailabilitypharmacokineticsbestresultsrelativecomparedcrude5%SDS-PBSpHreleasedgranulesacid-baseneutralizationcrystallizationcombinedultrasonicdispersionovercomechallengepoornanosuspensionsscreenedoptimizedsingle-factorexperimentsorthogonaldesignusingsizeappearanceindicesmorphologydifferentialscanningcalorimetryDSCX-raypowderdiffractionXRPDpropertiesdevelopedcosolventstabilizermalicacidhydrogenatedcastoroilpolyoxyethyleneetherHEL-40Scanningelectronmicroscopydemonstratedirregularsheetsuniformityaverageparticlediameter431 ± 18 nmpolydispersityindexPDI376 ± 0128zetapotential30 ± 044 mVsedimentationcoefficient993equilibriumsolubilitydifferentsolventssignificantlyimproved02-10999-fold8solutioncompletelywithin5 min6026%2831%CTAUCratsdosage50 mg/kg4231363 μg/mL04167 h1113629580 μg*h/mL26561%mightpromisinghardlysolubleExploitationeffectiveBioavailabilityNanosuspensionOraladministrationOxfendazoleSolubility

Similar Articles

Cited By (2)