Enhanced Immune Response Improves Resistance to Cadmium Stress in Triploid Crucian Carp.

Wen-Bin Liu, Min-Meng Wang, Liu-Ye Dai, Sheng-Hua Dong, Xiu-Dan Yuan, Shu-Li Yuan, Yi Tang, Jin-Hui Liu, Liang-Yue Peng, Ya-Mei Xiao
Author Information
  1. Wen-Bin Liu: State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.
  2. Min-Meng Wang: State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.
  3. Liu-Ye Dai: State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.
  4. Sheng-Hua Dong: State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.
  5. Xiu-Dan Yuan: State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.
  6. Shu-Li Yuan: State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.
  7. Yi Tang: State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.
  8. Jin-Hui Liu: State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.
  9. Liang-Yue Peng: State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.
  10. Ya-Mei Xiao: State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.

Abstract

Previous research has indicated that triploid crucian carp (3n fish) have preferential resistance to Cadmium (Cd) compared to . (2n fish). In this article, comparative research is further conducted between the 2n and 3n fish in terms of the immune response to Cd-induced stress. Exposure to 9 mg/L Cd for 96 h changed the hepatic function indexes remarkably in the 2n fish, but not in the 3n fish. In the serum of Cd-treated 2n fish, the levels of alanine amino transferase, aspartate aminotransferase, adenosine deaminase, and total bilirubin significantly increased, while the levels of total protein, albumin, lysozyme, and anti-superoxide anion radicals decreased demonstrating hepatotoxicity. By analysis of transcriptome profiles, many immune-related pathways were found to be involved in the response of 3n fish to the Cd-induced stress. Expression levels of the immune genes, including the interleukin genes, tumor necrosis factor super family member genes, chemokine gene, toll-like receptor gene, and inflammatory marker cyclooxygenase 2 gene were significantly enhanced in the hepatopancreas of the Cd-treated 3n fish. In contrast, the expression levels of these genes decreased in the 2n fish. This research provides a theoretical basis for polyploid fish breeding and is helpful for the ecological restoration of water due to pollution.

Keywords

References

  1. Fish Shellfish Immunol. 2015 Nov;47(1):360-7 [PMID: 26370542]
  2. Fish Shellfish Immunol. 2018 Jan;72:604-610 [PMID: 29146446]
  3. Yi Chuan Xue Bao. 2004 Jan;31(1):31-8 [PMID: 15468916]
  4. Fish Shellfish Immunol. 2017 Aug;67:604-611 [PMID: 28648885]
  5. Acta Vet Hung. 1993;41(3-4):415-26 [PMID: 8017244]
  6. Environ Pollut. 2018 Dec;243(Pt A):462-471 [PMID: 30216878]
  7. PLoS One. 2018 Apr 25;13(4):e0196100 [PMID: 29694393]
  8. Life Sci. 2019 Oct 15;235:116553 [PMID: 31185237]
  9. Fish Shellfish Immunol. 2018 Apr;75:27-31 [PMID: 29409931]
  10. Dev Comp Immunol. 2011 Dec;35(12):1215-22 [PMID: 21414348]
  11. Genetics. 2007 Jun;176(2):1023-34 [PMID: 17507678]
  12. J Exp Zool. 2000 Apr 1;286(5):505-12 [PMID: 10684574]
  13. Wiad Lek. 2004;57(9-10):453-5 [PMID: 15765761]
  14. BMC Genet. 2011 Jan 29;12:20 [PMID: 21276259]
  15. Regul Toxicol Pharmacol. 2018 Oct;98:240-244 [PMID: 30102957]
  16. Fish Shellfish Immunol. 2015 Dec;47(2):1032-42 [PMID: 26549173]
  17. Genetica. 2004 Jul;121(3):295-301 [PMID: 15521428]
  18. Proc Natl Acad Sci U S A. 2016 Feb 2;113(5):1327-32 [PMID: 26768847]
  19. Semin Immunopathol. 2009 Sep;31(3):333-43 [PMID: 19639317]
  20. Comp Biochem Physiol C Toxicol Pharmacol. 2020 Apr;230:108711 [PMID: 31958508]
  21. Mar Biotechnol (NY). 2013 Apr;15(2):133-44 [PMID: 22842782]
  22. Fish Shellfish Immunol. 2019 Apr;87:669-678 [PMID: 30753918]
  23. Aquat Toxicol. 2013 Oct 15;142-143:380-6 [PMID: 24095957]
  24. Genome Res. 2019 Nov;29(11):1805-1815 [PMID: 31649058]
  25. Fish Shellfish Immunol. 2017 Oct;69:164-172 [PMID: 28830711]
  26. Toxicology. 2007 Sep 5;238(2-3):200-10 [PMID: 17646041]
  27. Fish Shellfish Immunol. 2019 Jan;84:656-663 [PMID: 30393156]
  28. Aquat Toxicol. 2016 Nov;180:36-44 [PMID: 27642707]
  29. J Trace Elem Med Biol. 2015 Jan;29:104-10 [PMID: 24954678]
  30. Fish Shellfish Immunol. 2014 Aug;39(2):401-6 [PMID: 24925761]
  31. Curr Mol Med. 2018;18(6):400-408 [PMID: 30421675]
  32. Sci Rep. 2018 Jan 12;8(1):639 [PMID: 29330509]
  33. Mar Biotechnol (NY). 2015 Oct;17(5):604-12 [PMID: 26242753]
  34. Mol Cell Biochem. 2019 Feb;452(1-2):105-110 [PMID: 30066040]
  35. Chemosphere. 2019 May;222:91-97 [PMID: 30690405]
  36. J Fish Dis. 2018 Feb;41(2):263-268 [PMID: 29027691]
  37. Fish Shellfish Immunol. 2017 Apr;63:261-269 [PMID: 28232279]
  38. Hepatology. 2006 Feb;43(2 Suppl 1):S54-62 [PMID: 16447271]
  39. PLoS One. 2014 Oct 22;9(10):e111084 [PMID: 25338079]
  40. APMIS. 2012 Sep;120(9):743-9 [PMID: 22882264]
  41. Fish Physiol Biochem. 2019 Aug;45(4):1419-1429 [PMID: 31073676]
  42. Genomics. 2021 Mar;113(2):595-605 [PMID: 33485949]
  43. Yi Chuan Xue Bao. 2006 Apr;33(4):304-11 [PMID: 16625828]
  44. Fish Shellfish Immunol. 2019 Jun;89:18-26 [PMID: 30905838]
  45. Clin J Gastroenterol. 2009 Aug;2(4):300-305 [PMID: 26192430]
  46. Toxicol Appl Pharmacol. 1982 Sep 15;65(2):302-13 [PMID: 7179286]
  47. Fish Shellfish Immunol. 2017 Nov;70:391-397 [PMID: 28917489]
  48. Trends Ecol Evol. 2004 Apr;19(4):198-207 [PMID: 16701254]
  49. Ecotoxicol Environ Saf. 2008 Mar;69(3):403-10 [PMID: 17560650]
  50. Ecotoxicol Environ Saf. 2017 May;139:18-26 [PMID: 28092736]
  51. Mar Biotechnol (NY). 2020 Jun;22(3):443-455 [PMID: 32307628]
  52. World J Gastroenterol. 2017 Jun 7;23(21):3876-3882 [PMID: 28638227]
  53. Fish Shellfish Immunol. 2017 Nov;70:461-472 [PMID: 28826748]
  54. Fish Shellfish Immunol. 2019 Jun;89:83-90 [PMID: 30898618]

Word Cloud

Created with Highcharts 10.0.0fish3n2nlevelsgenesresearchimmuneresponsegenetriploidcruciancarpcadmiumCdCd-inducedstressfunctionCd-treatedtotalsignificantlydecreasedtranscriptomePreviousindicatedpreferentialresistancecomparedarticlecomparativeconductedtermsExposure9mg/L96hchangedhepaticindexesremarkablyserumalanineaminotransferaseaspartateaminotransferaseadenosinedeaminasebilirubinincreasedproteinalbuminlysozymeanti-superoxideanionradicalsdemonstratinghepatotoxicityanalysisprofilesmanyimmune-relatedpathwaysfoundinvolvedExpressionincludinginterleukintumornecrosisfactorsuperfamilymemberchemokinetoll-likereceptorinflammatorymarkercyclooxygenase2enhancedhepatopancreascontrastexpressionprovidestheoreticalbasispolyploidbreedinghelpfulecologicalrestorationwaterduepollutionEnhancedImmuneResponseImprovesResistanceCadmiumStressTriploidCrucianCarpliver

Similar Articles

Cited By (3)