Etiology and Treatment of Growth Delay in Noonan Syndrome.

Fernando Rodríguez, Ximena Gaete, Fernando Cassorla
Author Information
  1. Fernando Rodríguez: Institute of Maternal and Child Research, University of Chile, Santiago, Chile.
  2. Ximena Gaete: Institute of Maternal and Child Research, University of Chile, Santiago, Chile.
  3. Fernando Cassorla: Institute of Maternal and Child Research, University of Chile, Santiago, Chile.

Abstract

Noonan syndrome is characterized by multiple phenotypic features, including growth retardation, which represents the main cause of consultation to the clinician. Longitudinal growth during childhood and adolescence depends on several factors, among them an intact somatotrophic axis, which is characterized by an adequate growth hormone (GH) secretion by the pituitary, subsequent binding to its receptor, proper function of the post-receptor signaling pathway for this hormone (JAK-STAT5b and RAS/MAPK), and ultimately by the production of its main effector, insulin like growth factor 1 (IGF-1). Several studies regarding the function of the somatotrophic axis in patients with Noonan syndrome and data from murine models, suggest that partial GH insensitivity at a post-receptor level, as well as possible derangements in the RAS/MAPK pathway, are the most likely causes for the growth failure in these patients. Treatment with recombinant human growth hormone (rhGH) has been used extensively to promote linear growth in these patients. Numerous treatment protocols have been employed so far, but the published studies are quite heterogeneous regarding patient selection, length of treatment, and dose of rhGH utilized, so the true benefit of GH therapy is somewhat difficult to establish. This review will discuss the possible etiologies for the growth delay, as well as the outcomes following rhGH treatment in patients with Noonan syndrome.

Keywords

References

  1. Orphanet J Rare Dis. 2007 Jan 14;2:4 [PMID: 17222357]
  2. Indian Pediatr. 2021 Jan 15;58(1):30-33 [PMID: 33452774]
  3. Endocr J. 2019 Nov 28;66(11):983-994 [PMID: 31292302]
  4. Am J Med Genet A. 2003 Nov 15;123A(1):68-71 [PMID: 14556249]
  5. Curr Genet Med Rep. 2016 Sep;4(3):57-64 [PMID: 27942422]
  6. An Pediatr (Engl Ed). 2020 Jul;93(1):61.e1-61.e14 [PMID: 32493603]
  7. Nat Cell Biol. 2008 Jun;10(6):740-7 [PMID: 18488018]
  8. Eur J Endocrinol. 2016 May;174(5):641-50 [PMID: 26903553]
  9. Ital J Pediatr. 2015 Oct 06;41:71 [PMID: 26444854]
  10. Horm Res Paediatr. 2019;91(1):46-55 [PMID: 30939478]
  11. Endocr J. 2018 Feb 26;65(2):159-174 [PMID: 29109363]
  12. Acta Paediatr. 2005 Sep;94(9):1232-7 [PMID: 16203673]
  13. J Biol Chem. 2002 Nov 22;277(47):45592-603 [PMID: 12218045]
  14. Eur J Endocrinol. 2008 Sep;159(3):203-8 [PMID: 18562489]
  15. Endocr Rev. 2000 Feb;21(1):23-39 [PMID: 10696568]
  16. Hum Mol Genet. 2018 Jul 1;27(13):2276-2289 [PMID: 29659837]
  17. J Pediatr. 1996 May;128(5 Pt 2):S18-21 [PMID: 8627463]
  18. Horm Res Paediatr. 2019;91(4):252-261 [PMID: 31132774]
  19. Intern Med. 1992 Jul;31(7):908-11 [PMID: 1450501]
  20. Am J Med Genet A. 2018 Apr;176(4):951-958 [PMID: 29575624]
  21. Am J Med Genet. 1985 Jul;21(3):493-506 [PMID: 3895929]
  22. J Hum Genet. 2016 Jan;61(1):33-9 [PMID: 26446362]
  23. Horm Res Paediatr. 2015;83(3):167-76 [PMID: 25721697]
  24. Prenat Diagn. 2011 Oct;31(10):949-54 [PMID: 21744363]
  25. J Clin Endocrinol Metab. 2017 May 1;102(5):1661-1672 [PMID: 28187225]
  26. Arch Dis Child. 1992 Feb;67(2):178-83 [PMID: 1543375]
  27. J Clin Invest. 2010 Dec;120(12):4353-65 [PMID: 21041952]
  28. Curr Opin Endocrinol Diabetes Obes. 2018 Feb;25(1):67-73 [PMID: 29120925]
  29. Eur J Hum Genet. 2021 Mar;29(3):524-527 [PMID: 33082526]
  30. JAMA Pediatr. 2021 Feb 1;175(2):e205199 [PMID: 33346824]
  31. Dis Model Mech. 2011 Mar;4(2):228-39 [PMID: 21068439]
  32. J Clin Endocrinol Metab. 2001 May;86(5):1953-6 [PMID: 11344190]
  33. J Clin Endocrinol Metab. 2009 Jul;94(7):2338-44 [PMID: 19401366]
  34. J Clin Endocrinol Metab. 2006 Jan;91(1):300-6 [PMID: 16263833]
  35. J Clin Res Pediatr Endocrinol. 2016 Sep 1;8(3):305-12 [PMID: 27125300]
  36. Acta Paediatr Scand. 1991 Apr;80(4):446-50 [PMID: 2058394]
  37. Horm Res. 2008;70(3):129-36 [PMID: 18663312]
  38. J Pediatr. 1999 Dec;135(6):707-13 [PMID: 10586173]
  39. Mol Endocrinol. 2000 Sep;14(9):1338-50 [PMID: 10976913]
  40. Am J Hum Genet. 2012 Dec 7;91(6):1108-14 [PMID: 23200862]
  41. Methods Mol Biol. 2017;1487:379-408 [PMID: 27924582]
  42. J Biol Chem. 2003 Jun 20;278(25):22696-702 [PMID: 12682066]
  43. Endocr J. 2020 Aug 28;67(8):803-818 [PMID: 32269181]
  44. J Clin Endocrinol Metab. 1996 Jun;81(6):2291-7 [PMID: 8964866]
  45. Horm Res. 1995;44(4):164-7 [PMID: 8522277]
  46. Hormones (Athens). 2013 Jan-Mar;12(1):86-92 [PMID: 23624134]
  47. Lancet. 2013 Jan 26;381(9863):333-42 [PMID: 23312968]
  48. Acta Paediatr. 1997 Sep;86(9):943-6 [PMID: 9343272]
  49. Br J Cancer. 2015 Apr 14;112(8):1392-7 [PMID: 25742478]
  50. Arch Dis Child. 2001 May;84(5):440-3 [PMID: 11316696]
  51. J Clin Invest. 2011 Mar;121(3):1009-25 [PMID: 21339642]
  52. Am J Med Genet A. 2012 Nov;158A(11):2700-6 [PMID: 22887833]
  53. Horm Res. 2001;56(3-4):110-3 [PMID: 11847472]
  54. Arch Dis Child. 2007 Feb;92(2):128-32 [PMID: 16990350]
  55. Clin Endocrinol (Oxf). 2001 Jan;54(1):53-9 [PMID: 11167926]
  56. Horm Res. 2009 Dec;72 Suppl 2:46-8 [PMID: 20029237]
  57. Am J Med Genet A. 2015 Nov;167A(11):2786-94 [PMID: 26227443]
  58. PLoS Genet. 2014 May 29;10(5):e1004364 [PMID: 24875294]
  59. Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16395-400 [PMID: 25359213]
  60. Clin Cancer Res. 2017 Jun 15;23(12):e83-e90 [PMID: 28620009]
  61. Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4257-62 [PMID: 22371576]
  62. J Med Genet. 1987 Jan;24(1):9-13 [PMID: 3543368]
  63. Nat Med. 2004 Aug;10(8):849-57 [PMID: 15273746]
  64. J Clin Endocrinol Metab. 2005 Sep;90(9):5377-81 [PMID: 15985475]
  65. Lancet Diabetes Endocrinol. 2020 Aug;8(8):683-692 [PMID: 32707116]
  66. Int J Pediatr Endocrinol. 2015;2015(1):17 [PMID: 26351466]
  67. J Pediatr. 2012 Sep;161(3):501-505.e1 [PMID: 22494877]
  68. EBioMedicine. 2019 Apr;42:43-53 [PMID: 30898653]
  69. J Pediatr Endocrinol Metab. 2008 Mar;21(3):267-73 [PMID: 18540254]

MeSH Term

Animals
Disease Models, Animal
Growth Disorders
Human Growth Hormone
Humans
Mice
Noonan Syndrome
Treatment Outcome

Chemicals

Human Growth Hormone

Word Cloud

Created with Highcharts 10.0.0growthNoonansyndromepatientsrhGHtreatmenthormoneGHpathwayRAS/MAPKcharacterizedmainsomatotrophicaxisfunctionpost-receptorstudiesregardingwellpossibleTreatmentdelaymultiplephenotypicfeaturesincludingretardationrepresentscauseconsultationclinicianLongitudinalchildhoodadolescencedependsseveralfactorsamongintactadequatesecretionpituitarysubsequentbindingreceptorpropersignalingJAK-STAT5bultimatelyproductioneffectorinsulinlikefactor1IGF-1SeveraldatamurinemodelssuggestpartialinsensitivitylevelderangementslikelycausesfailurerecombinanthumanusedextensivelypromotelinearNumerousprotocolsemployedfarpublishedquiteheterogeneouspatientselectionlengthdoseutilizedtruebenefittherapysomewhatdifficultestablishreviewwilldiscussetiologiesoutcomesfollowingEtiologyGrowthDelaySyndromenearadultheight

Similar Articles

Cited By (15)