Regulates Grain Number and Grain Yield in Rice.
Li Hu, Weilan Chen, Wen Yang, Xiaoling Li, Cheng Zhang, Xiaoyu Zhang, Ling Zheng, Xiaobo Zhu, Junjie Yin, Peng Qin, Yuping Wang, Bingtian Ma, Shigui Li, Hua Yuan, Bin Tu
Author Information
Li Hu: Rice Research Institute, Sichuan Agricultural University, Chengdu, China.
Weilan Chen: Rice Research Institute, Sichuan Agricultural University, Chengdu, China.
Wen Yang: Rice Research Institute, Sichuan Agricultural University, Chengdu, China.
Xiaoling Li: Rice Research Institute, Sichuan Agricultural University, Chengdu, China.
Cheng Zhang: Liaoning Rice Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, China.
Xiaoyu Zhang: Rice Research Institute, Sichuan Agricultural University, Chengdu, China.
Ling Zheng: Rice Research Institute, Sichuan Agricultural University, Chengdu, China.
Xiaobo Zhu: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
Junjie Yin: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
Peng Qin: Rice Research Institute, Sichuan Agricultural University, Chengdu, China.
Yuping Wang: Rice Research Institute, Sichuan Agricultural University, Chengdu, China.
Bingtian Ma: Rice Research Institute, Sichuan Agricultural University, Chengdu, China.
Shigui Li: Rice Research Institute, Sichuan Agricultural University, Chengdu, China.
Hua Yuan: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
Bin Tu: Rice Research Institute, Sichuan Agricultural University, Chengdu, China.
中文译文
English
Rice grain yield consists of several key components, including tiller number, grain number per panicle (GNP), and grain weight. Among them, GNP is mainly determined by panicle branches and spikelet formation. In this study, we identified a gene affecting GNP and grain yield, , which encodes SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) family proteins. The mutation of significantly reduced secondary branches and GNP. was highly expressed in the early developing young panicles, consistent with its function of regulating panicle development. By combining expression analysis and dual-luciferase assays, we further confirmed that OsSPL9 directly activates the expression of (rice TERMINAL FLOWER 1/CENTRORADIALIS homolog) in the early developing young panicle to regulate the panicle branches and GNP. Haplotype analysis showed that Hap3 and Hap4 of might be favorable haplotypes contributing to high GNP in rice. These results provide new insights on high grain number breeding in rice.
Mol Plant. 2019 Aug 5;12(8):1114-1122
[PMID: 31059826 ]
Nat Genet. 2009 Apr;41(4):494-7
[PMID: 19305410 ]
Nat Commun. 2017 Mar 20;8:14789
[PMID: 28317902 ]
Genomics Proteomics Bioinformatics. 2020 Jun;18(3):256-270
[PMID: 32736037 ]
Plant J. 2000 Jun;22(6):561-70
[PMID: 10886776 ]
J Genet Genomics. 2019 Jan 20;46(1):41-51
[PMID: 30737149 ]
Science. 2005 Jul 29;309(5735):741-5
[PMID: 15976269 ]
Plant Physiol. 2020 Oct;184(2):988-1003
[PMID: 32723808 ]
Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):15504-9
[PMID: 26631749 ]
Nat Genet. 2012 Jun 24;44(8):950-4
[PMID: 22729225 ]
Plant Cell. 2013 Oct;25(10):3743-59
[PMID: 24170127 ]
Nat Plants. 2018 May;4(5):280-288
[PMID: 29632394 ]
Nat Genet. 2016 Apr;48(4):447-56
[PMID: 26950093 ]
J Exp Bot. 2018 Oct 12;69(21):5117-5130
[PMID: 30053063 ]
J Genet Genomics. 2016 Nov 20;43(11):673-676
[PMID: 27876244 ]
Plant Mol Biol. 2017 Jul;94(4-5):469-480
[PMID: 28551765 ]
Nat Biotechnol. 2012 Jan 22;30(2):174-8
[PMID: 22267009 ]
Plant Physiol. 2013 Jun;162(2):872-84
[PMID: 23629832 ]
Plant Physiol. 2006 Sep;142(1):280-93
[PMID: 16861571 ]
J Exp Bot. 2017 Jan 1;68(3):483-498
[PMID: 28204535 ]
Plant Cell. 2019 Jun;31(6):1257-1275
[PMID: 30940685 ]
Nat Genet. 2014 Apr;46(4):398-404
[PMID: 24633159 ]
Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):767-72
[PMID: 23267064 ]
Plant J. 2002 Mar;29(6):743-50
[PMID: 12148532 ]
Mol Plant. 2017 Sep 12;10(9):1246-1249
[PMID: 28624544 ]
Plant Biotechnol J. 2019 Jun;17(6):1007-1009
[PMID: 30677211 ]
G3 (Bethesda). 2019 Dec 3;9(12):4107-4114
[PMID: 31611344 ]
J Mol Biol. 2005 Sep 23;352(3):585-96
[PMID: 16095614 ]
Plant Cell. 2011 Sep;23(9):3276-87
[PMID: 21963665 ]
Mol Plant. 2019 Aug 5;12(8):1103-1113
[PMID: 31059825 ]
Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11765-70
[PMID: 13130077 ]
Plant Cell Physiol. 2012 Oct;53(10):1793-801
[PMID: 22960246 ]
Nat Genet. 2010 Jun;42(6):545-9
[PMID: 20495564 ]
Sci Rep. 2016 Jan 08;6:19022
[PMID: 26744119 ]
Nat Genet. 2010 Jun;42(6):541-4
[PMID: 20495565 ]
Plant Mol Biol. 2007 Nov;65(4):487-99
[PMID: 17594063 ]
Front Plant Sci. 2020 Sep 03;11:532771
[PMID: 33013960 ]
Nat Biotechnol. 2013 Aug;31(8):686-8
[PMID: 23929338 ]