Recent advances in electrode development for biomedical applications.

Eun Kwang Lee, Ratul Kumar Baruah, Hansraj Bhamra, Young-Joon Kim, Hocheon Yoo
Author Information
  1. Eun Kwang Lee: Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA.
  2. Ratul Kumar Baruah: Department of Electronics and Communication Engineering, Tezpur University, Assam, 784028 India.
  3. Hansraj Bhamra: Department of Electrical and Computer Engineering, Center for implantable devices, Purdue University, West Lafayette, IN 47907 USA.
  4. Young-Joon Kim: Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam, 13120 Republic of Korea.
  5. Hocheon Yoo: Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam, 13120 Republic of Korea. ORCID

Abstract

Elaborate electrodes that enable adhesion to the skin surface and effectively collect vital signs are necessitated. In recent years, various electrode materials and novel structures have been developed, and they have garnered scientific attention due to their higher sensing performances compared with those of conventional electrode-based sensors. This paper provides an overview of recent advances in biomedical sensors, focusing on the development of novel electrodes. We comprehensively review the different types of electrode materials in the context of efficient biosignal detection, with respect to material composition for flexible and wearable electrodes and novel electrode structures. Finally, we discuss recent packaging technologies in biomedical applications using flexible and wearable electrodes.

Keywords

References

  1. Sensors (Basel). 2020 Jun 29;20(13): [PMID: 32610658]
  2. ACS Appl Mater Interfaces. 2018 Jan 31;10(4):3652-3659 [PMID: 29313665]
  3. Microsyst Nanoeng. 2019 Feb 25;5:6 [PMID: 31057933]
  4. Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):3920-5 [PMID: 25775550]
  5. Mater Sci Eng C Mater Biol Appl. 2020 Dec;117:111299 [PMID: 32919660]
  6. J Control Release. 2021 Jan 10;329:907-918 [PMID: 33068646]
  7. Adv Mater. 2019 Mar;31(10):e1806133 [PMID: 30600559]
  8. Adv Mater. 2016 Jun;28(22):4338-72 [PMID: 26840387]
  9. Biosens Bioelectron. 2016 Jul 15;81:46-53 [PMID: 26918617]
  10. Analyst. 2007 Feb;132(2):142-7 [PMID: 17260074]
  11. Anal Chem. 2020 May 5;92(9):6327-6333 [PMID: 32286047]
  12. Nat Commun. 2019 Dec 17;10(1):5742 [PMID: 31848334]
  13. Nature. 2014 Mar 13;507(7491):181-9 [PMID: 24622198]
  14. IEEE Trans Biomed Eng. 2012 May;59(5):1472-9 [PMID: 22410324]
  15. Nanoscale. 2016 Aug 25;8(34):15479-85 [PMID: 27523903]
  16. Sci Transl Med. 2015 Apr 15;7(283):283rv3 [PMID: 25877894]
  17. Sci Adv. 2016 Apr 15;2(4):e1501856 [PMID: 27152354]
  18. Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11757-64 [PMID: 26372959]
  19. J Neural Eng. 2011 Feb;8(1):014001 [PMID: 21245527]
  20. Microsyst Nanoeng. 2019 Sep 9;5:42 [PMID: 31645996]
  21. Biosens Bioelectron. 2015 Dec 15;74:190-8 [PMID: 26143458]
  22. Sensors (Basel). 2016 Jun 17;16(6): [PMID: 27322278]
  23. Nat Biomed Eng. 2020 Feb;4(2):148-158 [PMID: 31768002]
  24. ACS Appl Mater Interfaces. 2014 Nov 26;6(22):19997-20002 [PMID: 25384251]
  25. Adv Mater. 2010 Jan 26;22(4):483-6 [PMID: 20217738]
  26. Science. 2014 Apr 4;344(6179):70-4 [PMID: 24700852]
  27. Nat Nanotechnol. 2010 Mar;5(3):190-4 [PMID: 20154685]
  28. Biointerphases. 2012 Dec;7(1-4):52 [PMID: 22915327]
  29. Small. 2018 Nov;14(45):e1802876 [PMID: 30300469]
  30. Nat Commun. 2013;4:1543 [PMID: 23443571]
  31. Science. 2011 Aug 12;333(6044):838-43 [PMID: 21836009]
  32. Adv Healthc Mater. 2018 Feb;7(3): [PMID: 29218800]
  33. Cell. 2015 Jul 30;162(3):662-74 [PMID: 26189679]
  34. Nature. 2016 Jan 28;529(7587):509-514 [PMID: 26819044]
  35. ACS Sens. 2019 Apr 26;4(4):1072-1080 [PMID: 30950598]
  36. Sensors (Basel). 2018 Apr 13;18(4): [PMID: 29652837]
  37. Nat Mater. 2013 Oct;12(10):938-44 [PMID: 24037122]

Word Cloud

Created with Highcharts 10.0.0electrodeselectroderecentnovelbiomedicalmaterialsstructuressensorsadvancesdevelopmentflexiblewearableapplicationsElaborateenableadhesionskinsurfaceeffectivelycollectvitalsignsnecessitatedyearsvariousdevelopedgarneredscientificattentionduehighersensingperformancescomparedconventionalelectrode-basedpaperprovidesoverviewfocusingcomprehensivelyreviewdifferenttypescontextefficientbiosignaldetectionrespectmaterialcompositionFinallydiscusspackagingtechnologiesusingRecentBiosensorsCompositedryElectricalbiosignalsFlexiblePackaging

Similar Articles

Cited By