Heterologous expression of MlcE in provides resistance to natural and semi-synthetic statins.

Ana Ley, Hilde Cornelijne Coumou, Rasmus John Normand Frandsen
Author Information
  1. Ana Ley: Department of Systems Biology, Technical University of Denmark, S��ltofts Plads 223, 2800 Kgs. Lyngby, Denmark.
  2. Hilde Cornelijne Coumou: Department of Systems Biology, Technical University of Denmark, S��ltofts Plads 223, 2800 Kgs. Lyngby, Denmark.
  3. Rasmus John Normand Frandsen: Department of Systems Biology, Technical University of Denmark, S��ltofts Plads 223, 2800 Kgs. Lyngby, Denmark.

Abstract

Statins are inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the key enzyme in cholesterol biosynthesis. Their extensive use in treatment and prevention of cardiovascular diseases placed statins among the best selling drugs. Construction of cell factory for the production of high concentrations of natural statins will require establishment of a non-destructive self-resistance mechanism to overcome the undesirable growth inhibition effects of statins. To establish active export of statins from yeast, and thereby detoxification, we integrated a putative efflux pump-encoding gene from the mevastatin-producing into the genome. The resulting strain showed increased resistance to both natural statins (mevastatin and lovastatin) and semi-synthetic statin (simvastatin) when compared to the wild type strain. Expression of RFP-tagged showed that MlcE is localized to the yeast plasma and vacuolar membranes. We provide a possible engineering strategy for improvement of future yeast based production of natural and semi-synthetic statins.

Keywords

References

  1. Nat Protoc. 2007;2(1):31-4 [PMID: 17401334]
  2. Metab Eng. 2012 Mar;14(2):104-11 [PMID: 22326477]
  3. Trends Biochem Sci. 1993 Jan;18(1):13-20 [PMID: 8438231]
  4. Nucleic Acids Res. 2013 Jan;41(Database issue):D43-7 [PMID: 23161681]
  5. Science. 1999 May 21;284(5418):1368-72 [PMID: 10334994]
  6. Appl Microbiol Biotechnol. 2002 Apr;58(5):555-64 [PMID: 11956737]
  7. Nucleic Acids Res. 2006;34(18):e122 [PMID: 17000637]
  8. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3957-61 [PMID: 6933445]
  9. Microbiol Mol Biol Rev. 1998 Mar;62(1):1-34 [PMID: 9529885]
  10. J Immunol. 2006 Jun 15;176(12):7657-65 [PMID: 16751413]
  11. Proteins. 2006 Aug 15;64(3):643-51 [PMID: 16752418]
  12. Bioinformatics. 2007 Nov 1;23(21):2947-8 [PMID: 17846036]
  13. Appl Biochem Biotechnol. 2013 Oct;171(4):927-38 [PMID: 23912209]
  14. Adv Biochem Eng Biotechnol. 2005;100:19-51 [PMID: 16270655]
  15. Appl Microbiol Biotechnol. 2010 Jan;85(4):869-83 [PMID: 19820926]
  16. Mol Genet Genomics. 2002 Jul;267(5):636-46 [PMID: 12172803]
  17. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W465-8 [PMID: 19429891]
  18. Microbiology (Reading). 1996 Jun;142 ( Pt 6):1557-1565 [PMID: 8704997]
  19. mBio. 2012 Oct 16;3(5):e00191-12 [PMID: 23073761]
  20. J Agric Food Chem. 2008 Jul 23;56(14):5639-46 [PMID: 18578535]
  21. Nucleic Acids Res. 1989 May 11;17(9):3469-78 [PMID: 2657660]
  22. Atheroscler Suppl. 2004 Oct;5(3):39-42 [PMID: 15531273]
  23. Appl Environ Microbiol. 2002 May;68(5):2095-100 [PMID: 11976076]
  24. Appl Biochem Biotechnol. 2010 Apr;160(7):2014-25 [PMID: 19728167]
  25. Yeast. 2010 Nov;27(11):955-64 [PMID: 20625983]
  26. BMC Biotechnol. 2010 Mar 16;10:21 [PMID: 20233396]
  27. Mol Genet Genomics. 2002 Jul;267(5):673-83 [PMID: 12172807]
  28. Mol Syst Biol. 2011 May 10;7:487 [PMID: 21556065]
  29. Yeast. 1992 Jul;8(7):501-17 [PMID: 1523884]
  30. Gene. 1993 Feb 14;124(1):1-11 [PMID: 8440470]
  31. Nat Cell Biol. 2003 Jun;5(6):572-7 [PMID: 12766777]
  32. Antonie Van Leeuwenhoek. 2000 Dec;78(3-4):287-95 [PMID: 11386351]
  33. Angew Chem Int Ed Engl. 2013 Jun 17;52(25):6472-5 [PMID: 23653178]
  34. Microbiol Rev. 1996 Dec;60(4):575-608 [PMID: 8987357]
  35. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W597-600 [PMID: 23671338]
  36. J Antibiot (Tokyo). 1979 Aug;32(8):852-4 [PMID: 500505]
  37. Microbiol Res. 2010 May 30;165(4):259-67 [PMID: 19651502]
  38. Curr Opin Microbiol. 2005 Jun;8(3):282-93 [PMID: 15939351]
  39. Mol Plant Microbe Interact. 1999 Oct;12(10):901-10 [PMID: 10517030]

Word Cloud

Created with Highcharts 10.0.0statinsnaturalyeastsemi-syntheticStatinsfactoryproductionstrainshowedresistanceMlcEinhibitors3-hydroxy-3-methylglutarylcoenzymereductasekeyenzymecholesterolbiosynthesisextensiveusetreatmentpreventioncardiovasculardiseasesplacedamongbestsellingdrugsConstructioncellhighconcentrationswillrequireestablishmentnon-destructiveself-resistancemechanismovercomeundesirablegrowthinhibitioneffectsestablishactiveexporttherebydetoxificationintegratedputativeeffluxpump-encodinggenemevastatin-producinggenomeresultingincreasedmevastatinlovastatinstatinsimvastatincomparedwildtypeExpressionRFP-taggedlocalizedplasmavacuolarmembranesprovidepossibleengineeringstrategyimprovementfuturebasedHeterologousexpressionprovidesCellPolyketideResistanceSaccharomycescerevisiaeTransport

Similar Articles

Cited By (6)