Comparison of empirical and dynamic models for HIV viral load rebound after treatment interruption.

Ante Bing, Yuchen Hu, Melanie Prague, Alison L Hill, Jonathan Z Li, Ronald J Bosch, Victor De Gruttola, Rui Wang
Author Information
  1. Ante Bing: Department of Mathematics and Statistics, Boston University, Boston, MA, 02215, USA.
  2. Yuchen Hu: Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA, 02215, USA.
  3. Melanie Prague: University of Bordeaux, Inria Bordeaux Sud-Ouest, Inserm, Bordeaux Population Health Research Center, SISTM Team, UMR 1219, F-33000 Bordeaux, France.
  4. Alison L Hill: Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138.
  5. Jonathan Z Li: Brigham and Women's Hospital, Harvard Medical School, Boston MA 02215, USA.
  6. Ronald J Bosch: Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.
  7. Victor De Gruttola: Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.
  8. Rui Wang: Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA, 02215, USA.

Abstract

OBJECTIVE: To compare empirical and mechanistic modeling approaches for describing HIV-1 RNA viral load trajectories after antiretroviral treatment interruption and for identifying factors that predict features of viral rebound process.
METHODS: We apply and compare two modeling approaches in analysis of data from 346 participants in six AIDS Clinical Trial Group studies. From each separate analysis, we identify predictors for viral set points and delay in rebound. Our empirical model postulates a parametric functional form whose parameters represent different features of the viral rebound process, such as rate of rise and viral load set point. The viral dynamics model augments standard HIV dynamics models-a class of mathematical models based on differential equations describing biological mechanisms-by including reactivation of latently infected cells and adaptive immune response. We use Monolix, which makes use of a Stochastic Approximation of the Expectation-Maximization algorithm, to fit non-linear mixed effects models incorporating observations that were below the assay limit of quantification.
RESULTS: Among the 346 participants, the median age at treatment interruption was 42. Ninety-three percent of participants were male and sixty-five percent, white non-Hispanic. Both models provided a reasonable fit to the data and can accommodate atypical viral load trajectories. The median set points obtained from two approaches were similar: 4.44 log10 copies/mL from the empirical model and 4.59 log10 copies/mL from the viral dynamics model. Both models revealed that higher nadir CD4 cell counts and ART initiation during acute/recent phase were associated with lower viral set points and identified receiving a non-nucleoside reverse transcriptase inhibitor (NNRTI)-based pre-ATI regimen as a predictor for a delay in rebound.
CONCLUSION: Although based on different sets of assumptions, both models lead to similar conclusions regarding features of viral rebound process.

Keywords

References

  1. Biometrics. 2012 Sep;68(3):943-53 [PMID: 22150787]
  2. Ann Intern Med. 1997 Jun 15;126(12):946-54 [PMID: 9182471]
  3. Stat Methods Med Res. 2017 Apr;26(2):542-566 [PMID: 25296865]
  4. PLoS Pathog. 2015 Jul 02;11(7):e1005000 [PMID: 26133551]
  5. J Infect Dis. 2010 Sep 1;202(5):705-16 [PMID: 20662716]
  6. Biometrics. 2006 Jun;62(2):413-23 [PMID: 16918905]
  7. J Pharmacokinet Biopharm. 1980 Dec;8(6):553-71 [PMID: 7229908]
  8. Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):19079-84 [PMID: 18025463]
  9. J Virol. 2003 Apr;77(8):5037-8 [PMID: 12663814]
  10. Biostatistics. 2013 Jul;14(3):477-90 [PMID: 23376427]
  11. Vaccine. 2009 Oct 9;27(43):6088-94 [PMID: 19450647]
  12. Stat Med. 1992 Oct-Nov;11(14-15):1981-2000 [PMID: 1480884]
  13. J Virus Erad. 2019 Jan 1;5(1):3-9 [PMID: 30800420]
  14. Lancet. 1999 Nov 20;354(9192):1782-5 [PMID: 10577640]
  15. Stat Med. 2002 Aug 15;21(15):2199-214 [PMID: 12210633]
  16. Stat Med. 2010 Oct 15;29(23):2384-98 [PMID: 20603815]
  17. Stat Interface. 2015;8(2):203-215 [PMID: 26753050]
  18. Stat Med. 2002 Dec 15;21(23):3655-75 [PMID: 12436462]
  19. Nature. 1995 Jan 12;373(6510):123-6 [PMID: 7816094]
  20. BMC Biol. 2013 Sep 03;11:96 [PMID: 24020860]
  21. Stat Methods Med Res. 2005 Apr;14(2):171-92 [PMID: 15807150]
  22. PLoS Comput Biol. 2020 Nov 3;16(11):e1008248 [PMID: 33141821]
  23. Biometrics. 2020 Jul 19;: [PMID: 32683682]
  24. Pharm Stat. 2020 May;19(3):187-201 [PMID: 31663263]
  25. AIDS. 2009 Sep 24;23(15):1987-95 [PMID: 19696651]
  26. Ann Intern Med. 2002 Sep 3;137(5 Pt 2):381-433 [PMID: 12617573]
  27. Comput Methods Programs Biomed. 2007 Oct;88(1):52-61 [PMID: 17707944]
  28. Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5467-72 [PMID: 25870266]
  29. PLoS One. 2010 May 10;5(5):e10555 [PMID: 20479938]
  30. Lancet HIV. 2019 Apr;6(4):e259-e268 [PMID: 30885693]
  31. PLoS Pathog. 2016 Apr 27;12(4):e1005535 [PMID: 27119536]
  32. Stat Med. 2005 Jan 15;24(1):65-82 [PMID: 15523706]
  33. Nature. 1995 Jan 12;373(6510):117-22 [PMID: 7529365]
  34. Biometrics. 1999 Jun;55(2):410-8 [PMID: 11318194]
  35. J Int AIDS Soc. 2013 Sep 04;16:1-14 [PMID: 24008177]
  36. AIDS. 2016 Jan 28;30(3):343-53 [PMID: 26588174]
  37. Biometrics. 2017 Mar;73(1):63-71 [PMID: 27377556]
  38. Comput Stat Data Anal. 2007 Aug 15;51(12):5718-5730 [PMID: 19578533]
  39. Nature. 1997 May 8;387(6629):188-91 [PMID: 9144290]
  40. J Infect Dis. 2006 Dec 15;194(12):1672-6 [PMID: 17109338]
  41. Stat Methods Med Res. 2020 Dec;29(12):3586-3604 [PMID: 32669048]
  42. J Comput Graph Stat. 2009;18(4):797-817 [PMID: 25829836]
  43. PLoS Comput Biol. 2009 Oct;5(10):e1000533 [PMID: 19834532]
  44. J Infect Dis. 2006 Sep 1;194(5):623-32 [PMID: 16897661]
  45. Biometrics. 2007 Dec;63(4):1198-206 [PMID: 17489970]
  46. Stat Med. 2020 Jul 10;39(15):2051-2066 [PMID: 32293756]
  47. Biometrics. 2012 Sep;68(3):902-11 [PMID: 22934714]
  48. Comput Methods Programs Biomed. 2013 Aug;111(2):447-58 [PMID: 23764196]
  49. Nature. 2018 Nov;563(7731):360-364 [PMID: 30283138]
  50. Stat Methods Med Res. 2002 Aug;11(4):317-25 [PMID: 12197299]
  51. PLoS Comput Biol. 2019 Jul 24;15(7):e1007229 [PMID: 31339888]
  52. Biometrics. 2011 Dec;67(4):1594-604 [PMID: 21504417]
  53. Stat Med. 2002 Jul 30;21(14):2093-108 [PMID: 12111889]
  54. Biometrics. 2005 Mar;61(1):64-73 [PMID: 15737079]

Grants

  1. P01 AI131365/NIAID NIH HHS
  2. UL1 TR001442/NCATS NIH HHS
  3. UM1 AI068634/NIAID NIH HHS
  4. R37 AI051164/NIAID NIH HHS
  5. R01 AI136947/NIAID NIH HHS
  6. P01 AI131385/NIAID NIH HHS
  7. UM1 AI068636/NIAID NIH HHS

Word Cloud

Created with Highcharts 10.0.0viralreboundmodelsempiricalloadtreatmentinterruptionsetmodelapproachesfeaturesprocessparticipantspointsdynamicscomparemodelingdescribingtrajectoriestwoanalysisdata346predictorsdelaydifferentHIVbasedusefitmedianpercent4log10copies/mLdynamicOBJECTIVE:mechanisticHIV-1RNAantiretroviralidentifyingfactorspredictMETHODS:applysixAIDSClinicalTrialGroupstudiesseparateidentifypostulatesparametricfunctionalformwhoseparametersrepresentraterisepointaugmentsstandardmodels-aclassmathematicaldifferentialequationsbiologicalmechanisms-byincludingreactivationlatentlyinfectedcellsadaptiveimmuneresponseMonolixmakesStochasticApproximationExpectation-Maximizationalgorithmnon-linearmixedeffectsincorporatingobservationsassaylimitquantificationRESULTS:Amongage42Ninety-threemalesixty-fivewhitenon-Hispanicprovidedreasonablecanaccommodateatypicalobtainedsimilar:4459revealedhighernadirCD4cellcountsARTinitiationacute/recentphaseassociatedloweridentifiedreceivingnon-nucleosidereversetranscriptaseinhibitorNNRTI-basedpre-ATIregimenpredictorCONCLUSION:AlthoughsetsassumptionsleadsimilarconclusionsregardingComparisonsystem

Similar Articles

Cited By