Experimental Techniques to Assess Coral Physiology Under Global and Local Stressors: Current Approaches and Novel Insights.

Walter Dellisanti, Jeffery T H Chung, Cher F Y Chow, Jiajun Wu, Mark L Wells, Leo L Chan
Author Information
  1. Walter Dellisanti: State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, China.
  2. Jeffery T H Chung: State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, China.
  3. Cher F Y Chow: State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, China.
  4. Jiajun Wu: State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, China.
  5. Mark L Wells: School of Marine Sciences, University of Maine, Orono, ME, United States.
  6. Leo L Chan: State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, China.

Abstract

Coral reefs are declining worldwide due to global changes in the marine environment. The increasing frequency of massive bleaching events in the tropics is highlighting the need to better understand the stages of coral physiological responses to extreme conditions. Moreover, like many other coastal regions, coral reef ecosystems are facing additional localized anthropogenic stressors such as nutrient loading, increased turbidity, and coastal development. Different strategies have been developed to measure the health status of a damaged reef, ranging from the resolution of individual polyps to the entire coral community, but techniques for measuring coral physiology are not yet widely implemented. For instance, while there are many studies of the coral holobiont response in single or limited-number multiple stressor experiments, they provide only partial insights into metabolic performance under more complex and temporally and spatially variable natural conditions. Here, we discuss the current status of coral reefs and their global and local stressors in the context of experimental techniques that measure core processes in coral metabolism (respiration, photosynthesis, and biocalcification) , and their role in indicating the health status of colonies and communities. We highlight the need to improve the capability of studies in order to better understand the resilience and stress response of corals under multiple global and local scale stressors.

Keywords

References

  1. J Exp Biol. 2006 Jan;209(Pt 2):273-83 [PMID: 16391349]
  2. Front Microbiol. 2017 Mar 07;8:341 [PMID: 28326066]
  3. Ecology. 2021 Feb;102(2):e03226 [PMID: 33067806]
  4. Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2527-31 [PMID: 20133799]
  5. Nat Rev Microbiol. 2007 May;5(5):355-62 [PMID: 17384666]
  6. Sci Rep. 2019 Aug 19;9(1):12067 [PMID: 31427632]
  7. Proc Biol Sci. 2011 Sep 7;278(1718):2691-7 [PMID: 21270034]
  8. Glob Chang Biol. 2013 May;19(5):1632-41 [PMID: 23505026]
  9. Sci Rep. 2020 Jul 20;10(1):11975 [PMID: 32686736]
  10. Science. 2018 Jan 5;359(6371):80-83 [PMID: 29302011]
  11. PLoS One. 2007 Aug 08;2(8):e711 [PMID: 17684557]
  12. Environ Sci Technol. 2007 Sep 1;41(17):6210-5 [PMID: 17937304]
  13. Nature. 2019 Apr;568(7752):387-390 [PMID: 30944475]
  14. Ecol Lett. 2012 Dec;15(12):1378-86 [PMID: 22938190]
  15. Mar Pollut Bull. 2017 Jul 15;120(1-2):109-116 [PMID: 28483141]
  16. Curr Biol. 2018 Aug 20;28(16):2570-2580.e6 [PMID: 30100341]
  17. Mar Pollut Bull. 2005 Feb;50(2):125-46 [PMID: 15737355]
  18. PLoS One. 2013;8(3):e58581 [PMID: 23536798]
  19. Braz J Biol. 2012 Aug;72(3 Suppl):655-71 [PMID: 23011296]
  20. PeerJ. 2013 Jul 16;1:e108 [PMID: 23882445]
  21. PLoS One. 2018 Jan 9;13(1):e0190872 [PMID: 29315312]
  22. Sci Adv. 2017 Nov 08;3(11):e1701356 [PMID: 29134196]
  23. PLoS One. 2012;7(2):e31192 [PMID: 22319615]
  24. Mar Pollut Bull. 2017 Jul 15;120(1-2):250-258 [PMID: 28526200]
  25. Sci Rep. 2015 Apr 02;5:9537 [PMID: 25835382]
  26. Mar Pollut Bull. 2017 Nov 15;124(1):189-197 [PMID: 28751030]
  27. New Phytol. 2008;177(4):849-858 [PMID: 18275492]
  28. Nature. 2018 Mar 22;555(7697):516-519 [PMID: 29539634]
  29. Science. 2007 Dec 14;318(5857):1737-42 [PMID: 18079392]
  30. Nature. 2016 Mar 17;531(7594):362-5 [PMID: 26909578]
  31. Biol Open. 2014 May 23;3(6):489-93 [PMID: 24857847]
  32. Front Cell Infect Microbiol. 2015 Jan 07;4:176 [PMID: 25621279]
  33. Nature. 2003 Sep 25;425(6956):365 [PMID: 14508477]
  34. Sci Adv. 2020 Apr 10;6(15):eaaz5443 [PMID: 32300659]
  35. Glob Chang Biol. 2021 Jan;27(2):312-326 [PMID: 33197302]
  36. J Exp Mar Biol Ecol. 2000 Sep 20;252(2):221-253 [PMID: 10967335]
  37. Photosynth Res. 1986 Jan;10(1-2):51-62 [PMID: 24435276]
  38. Proc Natl Acad Sci U S A. 2017 Apr 4;114(14):3660-3665 [PMID: 28320966]
  39. Nature. 2017 Mar 15;543(7645):373-377 [PMID: 28300113]
  40. Mar Pollut Bull. 2018 Oct;135:654-681 [PMID: 30301085]
  41. J Exp Biol. 2003 Nov;206(Pt 22):4041-9 [PMID: 14555744]
  42. Sci Rep. 2012;2:413 [PMID: 22639723]
  43. Proc Natl Acad Sci U S A. 2021 Feb 2;118(5): [PMID: 33500354]
  44. Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):4416-21 [PMID: 27044109]
  45. Plant Cell Environ. 2010 Jun;33(6):995-1004 [PMID: 20102538]
  46. ISME J. 2018 Mar;12(3):921-930 [PMID: 29379177]
  47. Nature. 2000 Dec 14;408(6814):850-3 [PMID: 11130722]
  48. Proc Biol Sci. 2008 Jun 22;275(1641):1359-65 [PMID: 18348962]
  49. Sci Adv. 2020 Aug 21;6(34): [PMID: 32937375]
  50. Biol Bull. 2009 Dec;217(3):269-82 [PMID: 20040751]
  51. Mar Pollut Bull. 2017 Apr 15;117(1-2):161-170 [PMID: 28162249]
  52. Nature. 2017 May 31;546(7656):82-90 [PMID: 28569801]
  53. J Exp Mar Biol Ecol. 2000 Sep 5;252(1):75-84 [PMID: 10962066]
  54. PLoS One. 2015 Oct 08;10(10):e0138800 [PMID: 26448294]
  55. Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17442-6 [PMID: 18988740]
  56. Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):E1558-67 [PMID: 22615403]
  57. Sci Rep. 2013;3:1421 [PMID: 23478289]
  58. Sci Rep. 2015 Jan 13;5:7694 [PMID: 25582836]
  59. Biol Bull. 1993 Dec;185(3):455-461 [PMID: 29300632]
  60. Glob Chang Biol. 2015 Jul;21(7):2479-2487 [PMID: 25611594]
  61. Mar Environ Res. 2019 May;147:138-148 [PMID: 31097215]
  62. Science. 2002 Feb 15;295(5558):1280-4 [PMID: 11847338]
  63. PLoS One. 2012;7(1):e30167 [PMID: 22253915]
  64. Rev Biol Trop. 2003 Jun;51 Suppl 4:57-66 [PMID: 15264554]
  65. Front Microbiol. 2012 Aug 27;3:316 [PMID: 22969755]
  66. PLoS One. 2014 Nov 26;9(11):e112161 [PMID: 25426626]
  67. Proc Biol Sci. 2018 Jun 13;285(1880): [PMID: 29875294]
  68. Science. 2011 Jul 22;333(6041):418-22 [PMID: 21778392]
  69. Sci Rep. 2020 Mar 16;10(1):4762 [PMID: 32179846]
  70. Science. 1999 Feb 5;283(5403):840-3 [PMID: 9933166]
  71. Philos Trans A Math Phys Eng Sci. 2011 May 28;369(1943):1980-96 [PMID: 21502171]

Word Cloud

Created with Highcharts 10.0.0coralglobalstressorsstatusCoralreefsneedbetterunderstandconditionsmanycoastalreefmeasurehealthtechniquesstudiesresponsemultiplelocalmetabolismdecliningworldwideduechangesmarineenvironmentincreasingfrequencymassivebleachingeventstropicshighlightingstagesphysiologicalresponsesextremeMoreoverlikeregionsecosystemsfacingadditionallocalizedanthropogenicnutrientloadingincreasedturbiditydevelopmentDifferentstrategiesdevelopeddamagedrangingresolutionindividualpolypsentirecommunitymeasuringphysiologyyetwidelyimplementedinstanceholobiontsinglelimited-numberstressorexperimentsprovidepartialinsightsmetabolicperformancecomplextemporallyspatiallyvariablenaturaldiscusscurrentcontextexperimentalcoreprocessesrespirationphotosynthesisbiocalcificationroleindicatingcoloniescommunitieshighlightimprovecapabilityorderresiliencestresscoralsscaleExperimentalTechniquesAssessPhysiologyGlobalLocalStressors:CurrentApproachesNovelInsightsenvironmentalmonitoringfluorometryphotobiologyunderwaterrespirometry

Similar Articles

Cited By