Genome-Wide Association Study and Genomic Prediction for Soybean Cyst Nematode Resistance in USDA Common Bean () Core Collection.

Ainong Shi, Paul Gepts, Qijian Song, Haizheng Xiong, Thomas E Michaels, Senyu Chen
Author Information
  1. Ainong Shi: Department of Horticulture, PTSC316, University of Arkansas, Fayetteville, AR, United States.
  2. Paul Gepts: Department of Plant Sciences, University of California, Davis, Davis, CA, United States.
  3. Qijian Song: United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States.
  4. Haizheng Xiong: Department of Horticulture, PTSC316, University of Arkansas, Fayetteville, AR, United States.
  5. Thomas E Michaels: Department of Horticultural Science, University of Minnesota, St. Paul, MN, United States.
  6. Senyu Chen: Southern Research and Outreach Center, University of Minnesota, Waseca, MN, United States.

Abstract

Soybean cyst nematode (SCN, ) has become the major yield-limiting biological factor in soybean production. Common bean is also a good host of SCN, and its production is challenged by this emerging pest in many regions such as the upper Midwest USA. The use of host genetic resistance has been the most effective and environmentally friendly method to manage SCN. The objectives of this study were to evaluate the SCN resistance in the USDA common bean core collection and conduct a genome-wide association study (GWAS) of single nucleotide polymorphism (SNP) markers with SCN resistance. A total of 315 accessions of the USDA common bean core collection were evaluated for resistance to SCN HG Type 0 (race 6). The common bean core set was genotyped with the BARCBean6K_3 Infinium BeadChips, consisting of 4,654 SNPs. Results showed that 15 accessions were resistant to SCN with a Female Index (FI) at 4.8 to 9.4, and 62 accessions were moderately resistant (10 < FI < 30) to HG Type 0. The association study showed that 11 SNP markers, located on chromosomes Pv04, 07, 09, and 11, were strongly associated with resistance to HG Type 0. GWAS was also conducted for resistance to HG Type 2.5.7 and HG Type 1.2.3.5.6.7 based on the public dataset ( = 276), consisting of a diverse set of common bean accessions genotyped with the BARCBean6K_3 chip. Six SNPs associated with HG Type 2.5.7 resistance on Pv 01, 02, 03, and 07, and 12 SNPs with HG Type 1.2.3.5.6.7 resistance on Pv 01, 03, 06, 07, 09, 10, and 11 were detected. The accuracy of genomic prediction (GP) was 0.36 to 0.49 for resistance to the three SCN HG types, indicating that genomic selection (GS) of SCN resistance is feasible. This study provides basic information for developing SCN-resistant common bean cultivars, using the USDA core germ plasm accessions. The SNP markers can be used in molecular breeding in common beans through marker-assisted selection (MAS) and GS.

Keywords

Associated Data

Dryad | 10.25338/B8KP45

References

  1. Theor Appl Genet. 1989 Dec;78(6):809-17 [PMID: 24226011]
  2. Theor Appl Genet. 2009 Oct;119(6):955-72 [PMID: 19688198]
  3. Gigascience. 2019 Feb 1;8(2): [PMID: 30535326]
  4. PLoS One. 2020 Jul 16;15(7):e0235089 [PMID: 32673346]
  5. BMC Genet. 2012 Jun 26;13:48 [PMID: 22734675]
  6. PLoS One. 2019 Feb 7;14(2):e0212140 [PMID: 30730982]
  7. Theor Appl Genet. 2016 Apr;129(4):805-817 [PMID: 26791836]
  8. Genes (Basel). 2018 Oct 23;9(11): [PMID: 30360561]
  9. BMC Genomics. 2019 Nov 27;20(1):904 [PMID: 31775625]
  10. Theor Appl Genet. 2009 Mar;118(5):979-92 [PMID: 19130029]
  11. Theor Appl Genet. 2011 Jul;123(2):339-50 [PMID: 21505832]
  12. Genet Res (Camb). 2011 Feb;93(1):77-87 [PMID: 21144129]
  13. Genomics Proteomics Bioinformatics. 2021 Aug;19(4):629-640 [PMID: 34492338]
  14. Front Genet. 2019 Nov 22;10:954 [PMID: 31824551]
  15. J Nematol. 2000 Dec;32(4):411-3 [PMID: 19270996]
  16. G3 (Bethesda). 2017 Jul 5;7(7):2315-2326 [PMID: 28533335]
  17. G3 (Bethesda). 2016 Aug 09;6(8):2329-41 [PMID: 27247288]
  18. Plant Genome. 2017 Mar;10(1): [PMID: 28464065]
  19. Theor Appl Genet. 2016 Jan;129(1):117-30 [PMID: 26518570]
  20. New Phytol. 2013 Jan;197(1):300-313 [PMID: 23126683]
  21. PLoS One. 2016 Jul 21;11(7):e0159338 [PMID: 27441552]
  22. BMC Genomics. 2014 Aug 29;15:740 [PMID: 25174348]
  23. Mol Ecol. 2005 Jul;14(8):2611-20 [PMID: 15969739]
  24. PLoS One. 2014 Sep 23;9(9):e107684 [PMID: 25247812]
  25. Nat Genet. 2013 Jan;45(1):43-50 [PMID: 23242369]
  26. Int J Mol Sci. 2020 Feb 17;21(4): [PMID: 32079240]
  27. Bioinformatics. 2007 Oct 1;23(19):2633-5 [PMID: 17586829]
  28. Theor Appl Genet. 2012 Sep;125(5):1015-31 [PMID: 22718301]
  29. Nat Genet. 2010 Nov;42(11):961-7 [PMID: 20972439]
  30. Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):453-8 [PMID: 23267105]
  31. Theor Appl Genet. 2007 Nov;115(7):1003-13 [PMID: 17849095]
  32. Front Plant Sci. 2017 Apr 21;8:550 [PMID: 28484471]
  33. Front Plant Sci. 2016 Aug 17;7:1214 [PMID: 27582748]
  34. PLoS One. 2012;7(11):e49488 [PMID: 23145179]
  35. PLoS One. 2017 Nov 30;12(11):e0188745 [PMID: 29190770]
  36. Hortic Res. 2021 Feb 1;8(1):24 [PMID: 33518704]
  37. G3 (Bethesda). 2015 Aug 28;5(11):2285-90 [PMID: 26318155]
  38. G3 (Bethesda). 2016 Aug 09;6(8):2611-6 [PMID: 27317786]
  39. G3 (Bethesda). 2020 Feb 6;10(2):665-675 [PMID: 31818873]
  40. J Nematol. 1988 Jul;20(3):392-5 [PMID: 19290228]
  41. Phytopathology. 2016 Dec;106(12):1444-1450 [PMID: 27392178]
  42. Theor Appl Genet. 2013 Feb;126(2):535-48 [PMID: 23124389]
  43. Plant Genome. 2021 Mar;14(1):e20064 [PMID: 33140563]
  44. J Nematol. 2003 Mar;35(1):23-8 [PMID: 19265970]
  45. Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):E788-96 [PMID: 22393017]
  46. PLoS One. 2012;7(10):e46919 [PMID: 23071663]
  47. Nat Genet. 2016 Aug;48(8):927-34 [PMID: 27322545]
  48. Front Genet. 2020 Sep 25;11:564515 [PMID: 33101385]
  49. Genome Biol. 2016 Feb 25;17:32 [PMID: 26911872]
  50. BMC Proc. 2011 May 27;5 Suppl 3:S11 [PMID: 21624167]
  51. Bioinformatics. 2012 Sep 15;28(18):2397-9 [PMID: 22796960]
  52. BMC Plant Biol. 2017 Jun 29;17(1):110 [PMID: 28662679]
  53. Philos Trans R Soc Lond B Biol Sci. 2008 Feb 12;363(1491):557-72 [PMID: 17715053]
  54. Bioinformatics. 2005 Jan 15;21(2):263-5 [PMID: 15297300]
  55. J Dairy Sci. 2018 Sep;101(9):8063-8075 [PMID: 30007805]
  56. Plant Physiol. 2008 Jul;147(3):969-77 [PMID: 18612074]
  57. G3 (Bethesda). 2017 Feb 9;7(2):557-569 [PMID: 28031244]
  58. Front Plant Sci. 2020 Jul 07;11:1001 [PMID: 32774338]
  59. PLoS Genet. 2016 Feb 01;12(2):e1005767 [PMID: 26828793]
  60. PLoS Genet. 2015 May 05;11(5):e1005048 [PMID: 25942577]
  61. Theor Appl Genet. 2017 Aug;130(8):1705-1722 [PMID: 28560590]
  62. Nat Genet. 2014 Jul;46(7):707-13 [PMID: 24908249]
  63. Hortic Res. 2019 Jan 1;6:9 [PMID: 30622722]
  64. Genetics. 2000 Jun;155(2):945-59 [PMID: 10835412]
  65. Nat Genet. 2010 Apr;42(4):355-60 [PMID: 20208535]
  66. Mol Biol Evol. 2016 Jul;33(7):1870-4 [PMID: 27004904]
  67. J Nematol. 2002 Dec;34(4):279-88 [PMID: 19265945]
  68. Genome Biol. 2017 Mar 29;18(1):60 [PMID: 28356141]
  69. Trends Plant Sci. 2014 Sep;19(9):592-601 [PMID: 24970707]
  70. Plant Genome. 2016 Nov;9(3): [PMID: 27902795]
  71. Front Plant Sci. 2019 Nov 15;10:1445 [PMID: 31803203]
  72. Heredity (Edinb). 2016 Apr;116(4):395-408 [PMID: 26860200]
  73. Plant Dis. 2010 Nov;94(11):1299-1304 [PMID: 30743635]
  74. Genet Sel Evol. 2009 Nov 24;41:51 [PMID: 19930712]
  75. Theor Appl Genet. 2011 Sep;123(5):827-45 [PMID: 21785951]
  76. BMC Genomics. 2017 Apr 18;18(1):306 [PMID: 28420340]

Word Cloud

Created with Highcharts 10.0.0resistanceSCNHGbeancommonTypestudyaccessions0USDAcore257genomicassociationSNPmarkers64SNPs1107selectionSoybeancystnematodesoybeanproductionCommonalsohostcollectionGWASsinglenucleotidepolymorphismsetgenotypedBARCBean6K_3consistingshowedresistantFI10<09associated13Pv0103predictionGSbecomemajoryield-limitingbiologicalfactorgoodchallengedemergingpestmanyregionsupperMidwestUSAusegeneticeffectiveenvironmentallyfriendlymethodmanageobjectivesevaluateconductgenome-widetotal315evaluatedraceInfiniumBeadChips654Results15FemaleIndex8962moderately30locatedchromosomesPv04stronglyconductedbasedpublicdataset=276diversechipSix021206detectedaccuracyGP3649threetypesindicatingfeasibleprovidesbasicinformationdevelopingSCN-resistantcultivarsusinggermplasmcanusedmolecularbreedingbeansmarker-assistedMASGenome-WideAssociationStudyGenomicPredictionCystNematodeResistanceBeanCoreCollectionHeteroderaglycinesPhaseolusvulgarisgenomewide

Similar Articles

Cited By