Order-by-disorder from bond-dependent exchange and intensity signature of nodal quasiparticles in a honeycomb cobaltate.

M Elliot, P A McClarty, D Prabhakaran, R D Johnson, H C Walker, P Manuel, R Coldea
Author Information
  1. M Elliot: Clarendon Laboratory, University of Oxford, Oxford, UK. ORCID
  2. P A McClarty: Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.
  3. D Prabhakaran: Clarendon Laboratory, University of Oxford, Oxford, UK. ORCID
  4. R D Johnson: Department of Physics and Astronomy, University College London, London, UK.
  5. H C Walker: ISIS Facility, Rutherford Appleton Laboratory-STFC, Didcot, UK. ORCID
  6. P Manuel: ISIS Facility, Rutherford Appleton Laboratory-STFC, Didcot, UK. ORCID
  7. R Coldea: Clarendon Laboratory, University of Oxford, Oxford, UK. r.coldea@physics.ox.ac.uk. ORCID

Abstract

Recent theoretical proposals have argued that cobaltates with edge-sharing octahedral coordination can have significant bond-dependent exchange couplings thus offering a platform in 3d ions for such physics beyond the much-explored realisations in 4d and 5d materials. Here we present high-resolution inelastic neutron scattering data within the magnetically ordered phase of the stacked honeycomb magnet CoTiO revealing the presence of a finite energy gap and demonstrate that this implies the presence of bond-dependent anisotropic couplings. We also show through an extensive theoretical analysis that the gap further implies the existence of a quantum order-by-disorder mechanism that, in this material, crucially involves virtual crystal field fluctuations. Our data also provide an experimental observation of a universal winding of the scattering intensity in angular scans around linear band-touching points for both magnons and dispersive spin-orbit excitons, which is directly related to the non-trivial topology of the quasiparticle wavefunction in momentum space near nodal points.

References

  1. Phys Rev B Condens Matter. 1992 Nov 1;46(17):11137-11140 [PMID: 10002982]
  2. Phys Rev Lett. 2010 Jul 9;105(2):027204 [PMID: 20867736]
  3. Science. 2017 Jun 9;356(6342):1055-1059 [PMID: 28596361]
  4. Phys Rev Lett. 2012 Aug 17;109(7):077204 [PMID: 23006400]
  5. Phys Rev Lett. 1989 Apr 24;62(17):2056-2059 [PMID: 10039845]
  6. Nat Commun. 2018 Jul 3;9(1):2591 [PMID: 29968725]
  7. Phys Rev Lett. 2012 Oct 19;109(16):167201 [PMID: 23215118]
  8. Nature. 2018 Jul;559(7713):227-231 [PMID: 29995863]
  9. Phys Rev Lett. 2020 Jul 24;125(4):047201 [PMID: 32794780]
  10. Phys Rev Lett. 2009 Jan 9;102(1):017205 [PMID: 19257237]

Word Cloud

Created with Highcharts 10.0.0bond-dependenttheoreticalexchangecouplingsscatteringdatahoneycombpresencegapimpliesalsointensitypointsnodalRecentproposalsarguedcobaltatesedge-sharingoctahedralcoordinationcansignificantthusofferingplatform3dionsphysicsbeyondmuch-exploredrealisations4d5dmaterialspresenthigh-resolutioninelasticneutronwithinmagneticallyorderedphasestackedmagnetCoTiOrevealingfiniteenergydemonstrateanisotropicshowextensiveanalysisexistencequantumorder-by-disordermechanismmaterialcruciallyinvolvesvirtualcrystalfieldfluctuationsprovideexperimentalobservationuniversalwindingangularscansaroundlinearband-touchingmagnonsdispersivespin-orbitexcitonsdirectlyrelatednon-trivialtopologyquasiparticlewavefunctionmomentumspacenearOrder-by-disordersignaturequasiparticlescobaltate

Similar Articles

Cited By