Effects of applied voltage on water at a gold electrode interface from molecular dynamics.

Zachary K Goldsmith, Marcos F Calegari Andrade, Annabella Selloni
Author Information
  1. Zachary K Goldsmith: Department of Chemistry, Princeton University Princeton NJ 08544 USA zkg@princeton.edu aselloni@princeton.edu. ORCID
  2. Marcos F Calegari Andrade: Department of Chemistry, Princeton University Princeton NJ 08544 USA zkg@princeton.edu aselloni@princeton.edu. ORCID
  3. Annabella Selloni: Department of Chemistry, Princeton University Princeton NJ 08544 USA zkg@princeton.edu aselloni@princeton.edu. ORCID

Abstract

Electrode-water interfaces under voltage bias demonstrate anomalous electrostatic and structural properties that are influential in their catalytic and technological applications. Mean-field and empirical models of the electrical double layer (EDL) that forms in response to an applied potential do not capture the heterogeneity that polarizable, liquid-phase water molecules engender. To illustrate the inhomogeneous nature of the electrochemical interface, Born-Oppenheimer molecular dynamics calculations of electrified Au(111) slabs interfaced with liquid water were performed using a combined explicit-implicit solvent approach. The excess charges localized on the model electrode were held constant and the electrode potentials were computed at frequent simulation times. The electrode potential in each trajectory fluctuated with changes in the atomic structure, and the trajectory-averaged potentials converged and yielded a physically reasonable differential capacitance for the system. The effects of the average applied voltages, both positive and negative, on the structural, hydrogen bonding, dynamical, and vibrational properties of water were characterized and compared to literature where applicable. Controlled-potential simulations of the interfacial solvent dynamics provide a framework for further investigation of more complex or reactive species in the EDL and broadly for understanding electrochemical interfaces .

References

  1. J Phys Chem Lett. 2018 Apr 19;9(8):1880-1884 [PMID: 29589437]
  2. J Chem Phys. 2013 Jan 14;138(2):024708 [PMID: 23320714]
  3. J Chem Phys. 2014 Aug 28;141(8):084502 [PMID: 25173016]
  4. Science. 2017 Jan 13;355(6321): [PMID: 28082532]
  5. J Chem Phys. 2018 Apr 28;148(16):164505 [PMID: 29716217]
  6. J Phys Chem Lett. 2013 Jan 17;4(2):264-8 [PMID: 26283432]
  7. J Phys Chem Lett. 2020 Feb 6;11(3):624-631 [PMID: 31899643]
  8. J Chem Phys. 2012 Feb 14;136(6):064102 [PMID: 22360164]
  9. J Chem Theory Comput. 2019 Dec 10;15(12):6895-6906 [PMID: 31689089]
  10. Phys Chem Chem Phys. 2018 May 3;20(17):11554-11558 [PMID: 29676413]
  11. Science. 2014 Nov 14;346(6211):831-4 [PMID: 25342657]
  12. J Chem Phys. 2020 Apr 14;152(14):144703 [PMID: 32295363]
  13. ACS Nano. 2019 Sep 24;13(9):9735-9780 [PMID: 31433942]
  14. Phys Chem Chem Phys. 2008 Jul 7;10(25):3609-12 [PMID: 18563221]
  15. Chem Sci. 2017 Oct 11;9(1):62-69 [PMID: 29629074]
  16. J Am Chem Soc. 2017 Jan 11;139(1):149-155 [PMID: 27936679]
  17. Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):1293-7 [PMID: 24474751]
  18. J Am Chem Soc. 2019 Mar 27;141(12):4777-4790 [PMID: 30768905]
  19. Phys Rev Lett. 2012 Dec 28;109(26):266101 [PMID: 23368585]
  20. ACS Cent Sci. 2020 Feb 26;6(2):304-311 [PMID: 32123749]
  21. J Chem Phys. 2015 Jan 21;142(3):034706 [PMID: 25612724]
  22. J Am Chem Soc. 2018 Dec 19;140(50):17643-17655 [PMID: 30468391]
  23. Phys Chem Chem Phys. 2020 Jun 10;22(22):12785-12793 [PMID: 32467958]
  24. J Phys Chem Lett. 2018 Apr 19;9(8):1927-1930 [PMID: 29595987]
  25. J Phys Condens Matter. 2017 Oct 24;29(46):465901 [PMID: 29064822]
  26. J Chem Phys. 2017 Jul 21;147(3):031102 [PMID: 28734301]
  27. J Chem Phys. 2016 Jan 7;144(1):014103 [PMID: 26747797]
  28. Phys Chem Chem Phys. 2020 Sep 16;22(35):19401-19442 [PMID: 32869776]
  29. Nature. 2020 Nov;587(7834):408-413 [PMID: 33208960]
  30. J Chem Theory Comput. 2017 Nov 14;13(11):5610-5623 [PMID: 28992416]
  31. J Chem Phys. 2019 Jan 28;150(4):041722 [PMID: 30709273]
  32. J Phys Chem Lett. 2020 Oct 1;11(19):8459-8469 [PMID: 32931284]
  33. Nat Mater. 2019 Jul;18(7):697-701 [PMID: 31036960]
  34. J Phys Chem Lett. 2018 Dec 6;9(23):6716-6721 [PMID: 30388372]
  35. Nat Mater. 2016 Dec 20;16(1):57-69 [PMID: 27994237]
  36. Phys Rev Lett. 2012 Jun 8;108(23):236402 [PMID: 23003978]
  37. J Chem Phys. 2018 Aug 28;149(8):084705 [PMID: 30193475]
  38. J Chem Phys. 2019 Jan 28;150(4):041706 [PMID: 30709274]
  39. J Chem Theory Comput. 2019 Mar 12;15(3):1996-2009 [PMID: 30682250]
  40. Langmuir. 2004 Aug 3;20(16):6639-43 [PMID: 15274567]
  41. Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 [PMID: 10062328]
  42. Acc Chem Res. 2015 Apr 21;48(4):998-1006 [PMID: 25799082]
  43. J Phys Condens Matter. 2009 Sep 30;21(39):395502 [PMID: 21832390]
  44. J Chem Phys. 2019 Jan 28;150(4):041730 [PMID: 30709280]
  45. Faraday Discuss. 2009;141:423-41; discussion 443-65 [PMID: 19227369]

Word Cloud

Created with Highcharts 10.0.0waterelectrodeapplieddynamicsinterfacesvoltagestructuralpropertiesEDLpotentialelectrochemicalinterfacemolecularsolventpotentialsElectrode-waterbiasdemonstrateanomalouselectrostaticinfluentialcatalytictechnologicalapplicationsMean-fieldempiricalmodelselectricaldoublelayerformsresponsecaptureheterogeneitypolarizableliquid-phasemoleculesengenderillustrateinhomogeneousnatureBorn-OppenheimercalculationselectrifiedAu111slabsinterfacedliquidperformedusingcombinedexplicit-implicitapproachexcesschargeslocalizedmodelheldconstantcomputedfrequentsimulationtimestrajectoryfluctuatedchangesatomicstructuretrajectory-averagedconvergedyieldedphysicallyreasonabledifferentialcapacitancesystemeffectsaveragevoltagespositivenegativehydrogenbondingdynamicalvibrationalcharacterizedcomparedliteratureapplicableControlled-potentialsimulationsinterfacialprovideframeworkinvestigationcomplexreactivespeciesbroadlyunderstandingEffectsgold

Similar Articles

Cited By