Coral distribution and bleaching vulnerability areas in Southwestern Atlantic under ocean warming.

Jessica Bleuel, Maria Grazia Pennino, Guilherme O Longo
Author Information
  1. Jessica Bleuel: Laboratório de Ecologia Marinha, Departamento de Oceanografia e Limnologia, Universidade Federal do Rio Grande do Norte, Av. Via Costeira/Senador Dinarte Mariz s/n, Natal, RN, 59014-002, Brasil.
  2. Maria Grazia Pennino: Instituto de Español de Oceanografía, Subida Radio Faro, 50, 36390, Vigo, Spain.
  3. Guilherme O Longo: Laboratório de Ecologia Marinha, Departamento de Oceanografia e Limnologia, Universidade Federal do Rio Grande do Norte, Av. Via Costeira/Senador Dinarte Mariz s/n, Natal, RN, 59014-002, Brasil. guilherme.o.longo@gmail.com.

Abstract

Global climate change is a major threat to reefs by increasing the frequency and severity of coral bleaching events over time, reducing coral cover and diversity. Ocean warming may cause shifts in coral communities by increasing temperatures above coral's upper thermal limits in tropical regions, and by making extratropical regions (marginal reefs) more suitable and potential refugia. We used Bayesian models to project coral occurrence, cover and bleaching probabilities in Southwestern Atlantic and predicted how these probabilities will change under a high-emission scenario (RCP8.5). By overlapping these projections, we categorized areas that combine high probabilities of coral occurrence, cover and bleaching as vulnerability-hotspots. Current coral occurrence and cover probabilities were higher in the tropics (1°S-20°S) but both will decrease and shift to new suitable extratropical reefs (20°S-27°S; tropicalization) with ocean warming. Over 90% of the area present low and mild vulnerability, while the vulnerability-hotspots represent ~ 3% under current and future scenarios, but include the most biodiverse reef complex in South Atlantic (13°S-18°S; Abrolhos Bank). As bleaching probabilities increase with warming, the least vulnerable areas that could act as potential refugia are predicted to reduce by 50%. Predicting potential refugia and highly vulnerable areas can inform conservation actions to face climate change.

References

  1. Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007). [PMID: 18079392]
  2. Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018). [PMID: 30111788]
  3. Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 1–12 (2019). [DOI: 10.3389/fmars.2019.00734]
  4. LaJeunesse, T. C. et al. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570-2580.e6 (2018). [PMID: 30100341]
  5. Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’ s coral reefs. Ove Hoegh-Guldberg (1998).
  6. Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science (80-.) 359, 80–83 (2018). [DOI: 10.1126/science.aan8048]
  7. Van Hooidonk, R., Maynard, J. A., Manzello, D. & Planes, S. Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Glob. Chang. Biol. 20, 103–112 (2014). [PMID: 24151155]
  8. Muller, E. M., Rogers, C. S., Spitzack, A. S. & Van Woesik, R. Bleaching increases likelihood of disease on Acropora palmata (Lamarck) in Hawksnest Bay, St John, US Virgin Islands. Coral Reefs 27, 191–195 (2008). [DOI: 10.1007/s00338-007-0310-2]
  9. Cróquer, A. & Weil, E. Changes in Caribbean coral disease prevalence after the 2005 bleaching event. Dis. Aquat. Organ. 87, 33–43 (2009). [PMID: 20095239]
  10. Grottoli, A. G. et al. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob. Chang. Biol. 20, 3823–3833 (2014). [PMID: 25044878]
  11. Schoepf, V. et al. Annual coral bleaching and the long-term recovery capacity of coral. Proc. R. Soc. B Biol. Sci. 282, 20151887 (2015). [DOI: 10.1098/rspb.2015.1887]
  12. Neal, B. P. et al. Caribbean massive corals not recovering from repeated thermal stress events during 2005–2013. Ecol. Evol. 7, 1339–1353 (2017). [PMID: 28261447]
  13. Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Côté, I. M. & Watkinson, A. R. Flattening of Caribbean coral reefs: Region-wide declines in architectural complexity. Proc. R. Soc. B Biol. Sci. 276, 3019–3025 (2009). [DOI: 10.1098/rspb.2009.0339]
  14. Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V. & Graham, N. A. J. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3, 424–452 (2011). [DOI: 10.3390/d3030424]
  15. Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 1–21 (2016). [DOI: 10.3389/fmars.2016.00062]
  16. Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: Scaling from organisms to communities. Ann. Rev. Mar. Sci. 12, 153–179 (2020). [PMID: 31505130]
  17. Kleypas, J. A., McManu, J. W. & Mene, L. A. B. Environmental limits to coral reef development: Where do we draw the line?. Am. Zool. 39, 146–159 (1999). [DOI: 10.1093/icb/39.1.146]
  18. Descombes, P. et al. Forecasted coral reef decline in marine biodiversity hotspots under climate change. Glob. Chang. Biol. 21, 2479–2487 (2015). [PMID: 25611594]
  19. Vergés, A. et al. The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B Biol. Sci. 281, 20140846 (2014). [DOI: 10.1098/rspb.2014.0846]
  20. Mies, M. et al. South Atlantic coral reefs are major global warming refugia and less susceptible to bleaching. Front. Mar. Sci. 7, 1–13 (2020). [DOI: 10.3389/fmars.2020.00514]
  21. Perry, C. T. & Larcombe, P. Marginal and non-reef-building coral environments. Coral Reefs 22, 427–432 (2003). [DOI: 10.1007/s00338-003-0330-5]
  22. Loiola, M. et al. Structure of marginal coral reef assemblages under different turbidity regime. Mar. Environ. Res. 147, 138–148 (2019). [PMID: 31097215]
  23. Beger, M., Sommer, B., Harrison, P. L., Smith, S. D. A. & Pandolfi, J. M. Conserving potential coral reef refuges at high latitudes. Divers. Distrib. 20, 245–257 (2014). [DOI: 10.1111/ddi.12140]
  24. Glynn, P. W. Coral reef bleaching: Facts, hypotheses and implications. Glob. Chang. Biol. 2, 495–509 (1996). [DOI: 10.1111/j.1365-2486.1996.tb00063.x]
  25. Semmler, R. F., Hoot, W. C. & Reaka, M. L. Are mesophotic coral ecosystems distinct communities and can they serve as refugia for shallow reefs?. Coral Reefs 36, 433–444 (2017). [DOI: 10.1007/s00338-016-1530-0]
  26. Rocha, L. A. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science (8-.) 361, 281–284 (2018). [DOI: 10.1126/science.aaq1614]
  27. Eckert, R. J., Studivan, M. S. & Voss, J. D. Populations of the coral species Montastraea cavernosa on the Belize Barrier Reef lack vertical connectivity. Sci. Rep. 9, 1–11 (2019). [DOI: 10.1038/s41598-019-43479-x]
  28. Serrano, X. M. et al. Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths. Mol. Ecol. 23, 4226–4240 (2014). [PMID: 25039722]
  29. Serrano, X. M. et al. Long distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides. Sci. Rep. 6, 1–12 (2016). [DOI: 10.1038/srep21619]
  30. Morais, J. & Santos, B. A. Limited potential of deep reefs to serve as refuges for tropical Southwestern Atlantic corals. Ecosphere 9, e02281 (2018). [DOI: 10.1002/ecs2.2281]
  31. Torda, G. et al. Rapid adaptive responses to climate change in corals. Nat. Clim. Chang. https://doi.org/10.1038/nclimate3374 (2017). [DOI: 10.1038/nclimate3374]
  32. Danielle, C. et al. Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nat Commun. 11(1), https://doi.org/10.1038/s41467-020-19169-y . (2020)
  33. D’Angelo, C. & Wiedenmann, J. Impacts of nutrient enrichment on coral reefs: New perspectives and implications for coastal management and reef survival. Curr. Opin. Environ. Sustain. 7, 82–93 (2014). [DOI: 10.1016/j.cosust.2013.11.029]
  34. Donovan, M.K.et al. Local conditions magnify coral loss after marine heatwaves. Science 372(6545), 977–980. https://doi.org/10.1126/science.abd9464 . (2021) [PMID: 34045353]
  35. Hughes, T. et al. Climate change, Human impacts, and the resilience of coral reefs. Laser Induced Damage Opt. Mater. 2009 7504, 75041H (2003).
  36. Carilli, J. E., Norris, R. D., Black, B. A., Walsh, S. M. & McField, M. Local stressors reduce coral resilience to bleaching. PLoS ONE 4, 1–5 (2009). [DOI: 10.1371/journal.pone.0006324]
  37. Donner, S. D., Heron, S. F. & Skirving, W. J. Future scenarios: A review of modelling efforts to predict the future of coral reefs in an era of climate change. 159–173. https://doi.org/10.1007/978-3-540-69775-6_10 (2018).
  38. McLeod, E. et al. Warming seas in the coral triangle: Coral reef vulnerability and management implications. Coast. Manag. 38, 518–539 (2010). [DOI: 10.1080/08920753.2010.509466]
  39. Maynard, J. A. et al. Vulnerability to coral reefs. 1–8 (2019).
  40. Leão, Z. M. A. N., Kikuchi, R. K. P. & Testa, V. Corals and coral reefs of Brazil. Latin Am. Coral Reefs https://doi.org/10.1016/B978-044451388-5/50003-5 (2003). [DOI: 10.1016/B978-044451388-5/50003-5]
  41. Leão, Z. M. A. N. & Kikuchi, R. K. P. A relic coral fauna threatened by global changes and human activities, Eastern Brazil. Mar. Pollut. Bull. 51, 599–611 (2005). [PMID: 15913660]
  42. Francini-Filho, R. B. & De Moura, R. L. Dynamics of fish assemblages on coral reefs subjected to different management regimes in the Abrolhos Bank, eastern Brazil. Aquat. Conserv. Mar. Freshw. Ecosyst. 18, 1166–1179 (2008). [DOI: 10.1002/aqc.966]
  43. Moura, R. L. et al. Spatial patterns of benthic megahabitats and conservation planning in the Abrolhos Bank. Cont. Shelf Res. 70, 109–117 (2013). [DOI: 10.1016/j.csr.2013.04.036]
  44. Vergés, A. et al. Tropicalisation of temperate reefs: Implications for ecosystem functions and management actions. Funct. Ecol. 33, 1000–1013 (2019). [DOI: 10.1111/1365-2435.13310]
  45. Yamano, H., Sugihara, K. & Nomura, K. Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys. Res. Lett. 38, (2011).
  46. Precht, W. F. & Aronson, R. B. Climate flickers and range shifts of reef corals. Front. Ecol. Environ. 2, 307 (2004). [DOI: 10.1890/1540-9295(2004)002[0307]
  47. Aued, A. W. et al. Large-scale patterns of benthic marine communities in the brazilian province. PLoS ONE 13, 1–15 (2018). [DOI: 10.1371/journal.pone.0198452]
  48. Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1–5 (2019). [DOI: 10.1038/s41467-019-09238-2]
  49. Phillips, N. A Companion to the e-Book “YaRrr!: The Pirate’s Guide to R”. (2017).
  50. R Core Team. R: A Language and Environment for Statistical Computing. (2020).
  51. Banha, T. N. S. et al. Low coral mortality during the most intense bleaching event ever recorded in subtropical Southwestern Atlantic reefs. Coral Reefs https://doi.org/10.1007/s00338-019-01856-y (2019). [DOI: 10.1007/s00338-019-01856-y]
  52. Oliveira, U. D. R., Gomes, P. B., Cordeiro, R. T. S., De Lima, G. V. & Pérez, C. D. Modeling impacts of climate change on the potential habitat of an endangered Brazilian endemic coral: Discussion about deep sea refugia. PLoS ONE 14, 1–24 (2019). [DOI: 10.1371/journal.pone.0211171]
  53. Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009). [PMID: 21141044]
  54. Price, N. N. et al. Global biogeography of coral recruitment: Tropical decline and subtropical increase. Mar. Ecol. Prog. Ser. 621, 1–17 (2019). [DOI: 10.3354/meps12980]
  55. Cacciapaglia, C. & van Woesik, R. Reef-coral refugia in a rapidly changing ocean. Glob. Chang. Biol. 21, 2272–2282 (2015). [PMID: 25646684]
  56. Baird, A. H. et al. A decline in bleaching suggests that depth can provide a refuge from global warming in most coral taxa. Mar. Ecol. Prog. Ser. 603, 257–264 (2018). [DOI: 10.3354/meps12732]
  57. Bongaerts, P., Ridgway, T., Sampayo, E. M. & Hoegh-Guldberg, O. Assessing the ‘deep reef refugia’ hypothesis: Focus on Caribbean reefs. Coral Reefs 29, 1–19 (2010). [DOI: 10.1007/s00338-009-0581-x]
  58. Coles, S. L. et al. Evidence of acclimatization or adaptation in Hawaiian corals to higher ocean temperatures. PeerJ 2018, 1–24 (2018).
  59. Bay, R. A., Rose, N. H., Logan, C. A. & Palumbi, S. R. Genomic models predict successful coral adaptation if future ocean warming rates are reduced. Sci. Adv. 3, 1–10 (2017). [DOI: 10.1126/sciadv.1701413]
  60. Wooldridge, S., Done, T., Berkelmans, R., Jones, R. & Marshall, P. Precursors for resilience in coral communities in a warming climate: A belief network approach. Mar. Ecol. Prog. Ser. 295, 157–169 (2005). [DOI: 10.3354/meps295157]
  61. Mazzei, E. F. et al. Newly discovered reefs in the southern Abrolhos Bank, Brazil: Anthropogenic impacts and urgent conservation needs. Mar. Pollut. Bull. 114, 123–133 (2017). [PMID: 27641110]
  62. Duarte, G. A. S. et al. Heat waves are a major threat to turbid coral reefs in Brazil. Front. Mar. Sci. 7, 179 (2020). [DOI: 10.3389/fmars.2020.00179]
  63. Ferreira L.C. et al. Different responses of massive and branching corals to a major heatwave at the largest and richest reef complex in South Atlantic. Mar. Biol. 168(5), https://doi.org/10.1007/s00227-021-03863-6 . (2021)
  64. Teixeira, C. D. et al. Sustained mass coral bleaching (2016–2017) in Brazilian turbid-zone reefs: taxonomic, cross-shelf and habitat-related trends. Coral Reefs https://doi.org/10.1007/s00338-019-01789-6 (2019). [DOI: 10.1007/s00338-019-01789-6]
  65. França, F. M. et al. Climatic and local stressor interactions threaten tropical forests and coral reefs. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190116 (2020). [DOI: 10.1098/rstb.2019.0116]
  66. Mumby, P. J. & Harborne, A. R. Marine reserves enhance the recovery of corals on Caribbean reefs. PLoS ONE 5, 1–7 (2010). [DOI: 10.1371/journal.pone.0008657]
  67. Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper ocean nutrient decline from CMIP6 model projections. Biogeosci. Discuss. https://doi.org/10.5194/bg-2020-16 (2020).
  68. Jokiel, P. L. Evaluating the assumptions involved. ICES J. Mar. Sci. 73, 550–557 (2015). [DOI: 10.1093/icesjms/fsv091]
  69. Matz, M. V., Treml, E. A. & Haller, B. C. Estimating the potential for coral adaptation to global warming across the Indo-West Pacific. Glob. Chang. Biol. 26, 3473–3481 (2020). [PMID: 32285562]
  70. Tyberghein, L. et al. Bio-ORACLE: A global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012). [DOI: 10.1111/j.1466-8238.2011.00656.x]
  71. Assis, J. et al. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018). [DOI: 10.1111/geb.12693]
  72. Sbrocco, E. J. & Barber, P. H. MARSPEC: Ocean climate layers for marine spatial ecology. Ecology 94, 979–979 (2013). [DOI: 10.1890/12-1358.1]
  73. Hijmans, J. R. et al. Package ‘ raster ’ R topics documented (2016).
  74. Sappington, J. M., Longshore, K. M. & Thompson, D. B. Quantifying landscape ruggedness for animal habitat analysis: A case study using bighorn sheep in the Mojave desert. J. Wildl. Manag. 71, 1419–1426 (2007). [DOI: 10.2193/2005-723]
  75. IPCC. Climate Change 2014 Part A: Global and Sectoral Aspects. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).
  76. Fox, J. & Weisberg, S. Multivariate Linear Models in R. An R Companion to Appl. Regres. 1–31 (2011).
  77. Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Required Pre-knowledge : A Linear Regression. Mixed Effects Models and Extensions in Ecology with R 1, (2009).
  78. Martins, T. G., Simpson, D., Lindgren, F. & Rue, H. Bayesian computing with INLA: New features. (2012).
  79. Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B Stat. Methodol. 71, 319–392 (2009). [DOI: 10.1111/j.1467-9868.2008.00700.x]
  80. Lindgren, F., Rue, H. & Lindström, J. An explicit link between Gaussian fields and Gaussian MARKOV random fields: The stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 423–498 (2011). [DOI: 10.1111/j.1467-9868.2011.00777.x]
  81. Muñoz, F., Pennino, M. G., Conesa, D., López-Quílez, A. & Bellido, J. M. Estimation and prediction of the spatial occurrence of fish species using Bayesian latent Gaussian models. Stoch. Environ. Res. Risk Assess. 27, 1171–1180 (2013). [DOI: 10.1007/s00477-012-0652-3]
  82. Held, L., Schrödle, B. & Rue, H. Posterior and cross-validatory predictive checks: A comparison of MCMC and INLA. Stat. Model. Regres. Struct. Festschrift Honour Ludwig Fahrmeir 1–20 (2010). https://doi.org/10.1007/978-3-7908-2413-1
  83. Watanabe, S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594 (2010).
  84. Roos, M. & Held, L. Sensitivity analysis in Bayesian generalized linear mixed models for binary data. Bayesian Anal. 6, 259–278 (2011). [DOI: 10.1214/11-BA609]
  85. Fonseca, V. P., Pennino, M. G., de Nóbrega, M. F., Oliveira, J. E. L. & de Figueiredo Mendes, L. Identifying fish diversity hot-spots in data-poor situations. Mar. Environ. Res. 129, 365–373 (2017). [PMID: 28687428]
  86. Pennino, M. G., Vilela, R., Bellido, J. M. & Velasco, F. Balancing resource protection and fishing activity: The case of the European hake in the northern Iberian Peninsula. Fish. Oceanogr. 28, 54–65 (2019). [DOI: 10.1111/fog.12386]
  87. Martínez-Minaya, J. et al. A hierarchical Bayesian Beta regression approach to study the effects of geographical genetic structure and spatial autocorrelation on species distribution range shifts. Mol. Ecol. Resour. 19, 929–943 (2019). [PMID: 30993910]

MeSH Term

Animals
Anthozoa
Atlantic Ocean
Climate Change
Coral Reefs
Ecosystem
Global Warming
Seawater
Temperature

Word Cloud

Created with Highcharts 10.0.0coralbleachingprobabilitiescoverwarmingareaschangereefspotentialrefugiaoccurrenceAtlanticclimateincreasingregionsextratropicalsuitableSouthwesternpredictedwillvulnerability-hotspotsoceanvulnerabilityGlobalmajorthreatfrequencyseverityeventstimereducingdiversityOceanmaycauseshiftscommunitiestemperaturescoral'supperthermallimitstropicalmakingmarginalusedBayesianmodelsprojecthigh-emissionscenarioRCP85overlappingprojectionscategorizedcombinehighCurrenthighertropics1°S-20°Sdecreaseshiftnew20°S-27°Stropicalization90%areapresentlowmildrepresent ~ 3%currentfuturescenariosincludebiodiversereefcomplexSouth13°S-18°SAbrolhosBankincreaseleastvulnerableactreduce50%Predictinghighly vulnerablecaninformconservationactionsfaceCoraldistribution

Similar Articles

Cited By