Improving the feasibility of aquaculture feed by using microalgae.

Faiz Ahmad Ansari, Abhishek Guldhe, Sanjay Kumar Gupta, Ismail Rawat, Faizal Bux
Author Information
  1. Faiz Ahmad Ansari: Institute for Water and Wastewater Technology, Durban University of Technology, P O Box1334, Durban, 4000, South Africa.
  2. Abhishek Guldhe: Amity Institute of Biotechnology, Amity University, Mumbai, India.
  3. Sanjay Kumar Gupta: Environmental Engineering, Department of Civil Engineering, Indian Institute of Technology, Delhi, India.
  4. Ismail Rawat: Institute for Water and Wastewater Technology, Durban University of Technology, P O Box1334, Durban, 4000, South Africa.
  5. Faizal Bux: Institute for Water and Wastewater Technology, Durban University of Technology, P O Box1334, Durban, 4000, South Africa. faizalb@dut.ac.za. ORCID

Abstract

The aquaculture industry is an efficient edible protein producer and grows faster than any other food sector. Therefore, it requires enormous amounts of fish feed. Fish feed directly affects the quality of produced fish, potential health benefits, and cost. Fish meal (FM), fis oil (FO), and plant-based supplements, predominantly used in fish feed, face challenges of low availability, low nutritional value, and high cost. The cost associated with aquaculture feed represents 40-75% of aquaculture production cost and one of the key market drivers for the thriving aquaculture industry. Microalgae are a primary producer in aquatic food chains. Microalgae are expanding continuously in renewable energy, pharmaceutical pigment, wastewater treatment, food, and feed industries. Major components of microalgal biomass are proteins with essential amino acids, lipids with polyunsaturated fatty acids (PUFA), carbohydrates, pigments, and other bioactive compounds. Thus, microalgae can be used as an essential, viable, and alternative feed ingredient in aquaculture feed. In recent times, live algae culture, whole algae, and lipid-extracted algae (LEA) have been tested in fish feed for growth, physiological activity, and nutritional value. The present review discusses the potential application of microalgae in aquaculture feed, its mode of application, nutritional value, and possible replacement of conventional feed ingredients, and disadvantages of plant-based feed. The review also focuses on integrated processes such as algae cultivation in aquaculture wastewater, aquaponics systems, challenges, and future prospects of using microalgae in the aquafeed industry.

Keywords

References

  1. Abdulrahman NM (2014a) Effect of replacing fishmeal with Spirulina spp. on carcass chemical composition of common carp (Cyprinus carpio L.). Iraqi J Vet Sc 28:67–70
  2. Abdulrahman NM (2014b) Evaluation of Spirulina spp. as food supplement and its effect on growth performance of common carp fingerlings. Int J Fish Aquat Stud 2(2):89–92
  3. Abomohra AE, Almutairi AW (2020) A close loop integrated approach for microalgae cultivation and efficient utilization of agar-free seaweed residues for enhancing biofuel recovery. Bioresour Technol 317:124027 [DOI: 10.1016/j.biortech.2020.124027]
  4. Abowei JFN, Ekubo AT (2011) A review of conventional and unconventional feeds in fish nutrition. Brit J Pharmacol Toxicol 2(4):179–191
  5. Ahn JH, Kim S, Park H, Rahm B, Pagilla K, Chandran K (2010) N2O emissions from activated sludge processes 2008-2009: results of a National Monitoring Survey in the United States. Environ Sci Technol 44(12):4505–4511 [DOI: 10.1021/es903845y]
  6. Ansari FA, Shriwastav A, Gupta SK, Rawat I, Guldhe A, Bux F (2015) Lipid extracted algae as a source for protein and reduced sugar : a step closer to the biorefinery. Bioresour Technol 179:559–564 [DOI: 10.1016/j.biortech.2014.12.047]
  7. Ansari FA, Singh P, Guldhe A, Bux F (2017a) Microalgal cultivation using aquaculture wastewater: integrated biomass generation and nutrient remediation. Algal Res 21:169–177 [DOI: 10.1016/j.algal.2016.11.015]
  8. Ansari FA, Gupta SK, Shriwastav A, Guldhe A, Rawat I, Bux F (2017b) Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass. Environ Sci Pollut Res 24(18):15299–15307 [DOI: 10.1007/s11356-017-9040-3]
  9. Ansari FA, Ravindran B, Gupta SK, Nasr M, Rawat I, Bux F (2019) Techno-economic estimation of wastewater phycoremediation and environmental benefits using Scenedesmus obliquus microalgae. J Environ Manag 240:293–302 [DOI: 10.1016/j.jenvman.2019.03.123]
  10. Ansari FA, Nasr M, Guldhe A, Gupta SK, Rawat I, Bux F (2020) Techno-economic feasibility of algal aquaculture via fish and biodiesel production pathways: a commercial-scale application. Sci Total Environ 704:135259 [DOI: 10.1016/j.scitotenv.2019.135259]
  11. Ansari FA, Ratha SK, Renuka N, Ramanna L, Gupta SK, Rawat I, Bux F (2021) Effect of microplastics on growth and biochemical composition of microalga Acutodesmus obliquus. Algal Res 56:102296 [DOI: 10.1016/j.algal.2021.102296]
  12. Apandi NM, Mohamed RMSR, Al-Gheethi A, Mohd AH (2018) Microalgal biomass production through phycoremediation of fresh market wastewater and potential of fresh market wastewater and potential applications as aquaculture feed. Environ Sci Pollut Res 26:3226–3242 [DOI: 10.1007/s11356-018-3937-3]
  13. Aranda-Burgos JA, da Costa F, Nóvoa S, Ojea J, Martínez-Patiño D (2014) Effects of microalgal diet on growth, survival, biochemical and fatty acid composition of Ruditapes decussatus larvae. Aquaculture 420-421:38–48 [DOI: 10.1016/j.aquaculture.2013.10.032]
  14. Arney B, Liu W, Forster IP, McKinley RS, Pearce CM (2015) Feasibility of dietary substitution of live microalgae with spray-dried Schizochytrium sp. or Spirulina in the hatchery culture of juveniles of the Pacific geoduck clam (Panopea generosa). Aquaculture 444:117–133 [DOI: 10.1016/j.aquaculture.2015.02.014]
  15. Babuskin S, Krishnan KR, Saravana PA (2014) Functional foods enriched with marine microalga Nannochloropsis oculata as a source of w -3 fatty acids. Food Technol Biotechnol 9862:292–299
  16. Badwy TM, Ibrahim EM, Zeinhom MM (2008) Partial replacement of fish meal with dried microalga (Chlorella spp. and Scenedesmus spp.) in Nile tilapia (Oreochromis niloticus) diets. In 8th International Symposium on Tilapia in Aquaculture 801-811
  17. Basri NA, Shaleh SRM, Matanjun P, Noor NM, Shapawi R (2015) The potential of microalgae meal as an ingredient in the diets of early juvenile Pacific white shrimp, Litopenaeus vannamei. J Appl Phycol 27:857–863 [DOI: 10.1007/s10811-014-0383-6]
  18. Beal CM, Gerber LN, Thongrod S, Phromkunthong W, Kiron V, Granados J, Archibald I, Greene CH, Huntley ME (2018) Marine microalgae commercial production improves sustainability of global fisheries and aquaculture. Sci Rep 8(1):1–8 [DOI: 10.1038/s41598-018-33504-w]
  19. Becker EW (1994) Microalgae: biotechnology and microbiology. Cambridge University Press
  20. Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25(2):207–210 [DOI: 10.1016/j.biotechadv.2006.11.002]
  21. Belay A, Kato T, Ota Y (1996) Spirulina (Arthrospira); potential application as an animal feed supplement. J Appl Phycol 8:303–311 [DOI: 10.1007/BF02178573]
  22. Ben-Amotz A, Gilboa A (1980) Cryopreservation of marine unicellular algae. A survey of algae with regard to size, culture age. Photosynthetic activity and chlorophyll-to-cell ratio. Mar Ecol Prog Ser 2:157–161 [DOI: 10.3354/meps002157]
  23. Benemann JR (1992) Microalgae aquaculture feeds. J Appl Phycol 4:233–245 [DOI: 10.1007/BF02161209]
  24. Bhola KM, Swalaha FM, Nasr M, Kumari S, Bux F (2016) Physiological responses of carbon-sequestering microalgae to elevated carbon regimes. Eur J Phycol 51(4):401–412 [DOI: 10.1080/09670262.2016.1193902]
  25. Bohutskyi P, Ketter B, Chow S, Adams KJ, Betenbaugh MJ, Allnutt FT, Bouwer EJ (2015) Anaerobic digestion of lipid-extracted Auxenochlorella protothecoides biomass for methane generation and nutrient recovery. Bioresour Technol 183:229-39 [DOI: 10.1016/j.biortech.2015.02.012]
  26. Borowitzka MA (1997) Microalgae for aquaculture; opportunities and constraints. J Appl Phycol 9:393–401 [DOI: 10.1023/A]
  27. Bravo-Tello K, Ehrenfeld N, Solis CJ, Ulloa PE, Hedrera M, Pizarro-Guajardo M (2017) Effect of microalgae on intestinal inflammation triggered by soybean meal and bacterial infection in zebrafish. PLoS One 12(11):e0187696 [DOI: 10.1371/journal.pone.0187696]
  28. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577 [DOI: 10.1016/j.rser.2009.10.009]
  29. Brown MR (2002) Nutritional value and use of microalgae in aquaculture. CSIRO Marine Res 3:291–292
  30. Brown MR, Jeffrey SW, Volkman JK, Dunstan G (1997) Nutritional properties of microaglae for mariculture. Aquaculture 151:315–331 [DOI: 10.1016/S0044-8486(96)01501-3]
  31. Brune DE (2011) Aquaculture and biofuels: three decades of microalgae lessons, Southeast Bioenergy Conference,
  32. Bryant HL, Gogichaishvili I, Anderson D, Richardson JW, Sawyer J, Wickersham T, Drewery ML (2012) The value of post-extracted algae residue. Algal Res 1:185–193 [DOI: 10.1016/j.algal.2012.06.001]
  33. Buitrago EB (1992) Concentracibn y presetvacibn de microalgas coma reserva de aliment de organismos marinos cultivados. Prog Iberoam Cienc Tee Subprog II – Acuicultura Cyted-D 1:47–53
  34. Carneiro WF, TFD C, Orlando TM, Meurer F, DAdeJ P, BdoC V, ARdaCB V, LDS M (2020) Replacing fish meal by Chlorella sp. meal: effects on zebrafish growth, reproductive performances, biochemical parameters and digestive enzymes. Aquaculture 528:735612 [DOI: 10.1016/j.aquaculture.2020.735612]
  35. Carrero A, Vicente G, Rodríguez R, del Peso GL, Santos C (2015) Synthesis of fatty acids methyl esters (FAMEs) from Nannochloropsis gaditana microalga using heterogeneous acid catalysts. Biochem Eng J 97:119-24 [DOI: 10.1016/j.bej.2015.02.003]
  36. Chauton MS, Reitan KI, Norsker NH, Tveterås R, Kleivdal HT (2015) A techno-economic analysis of industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed: research challenges and possibilities. Aquaculture 436:95–103 [DOI: 10.1016/j.aquaculture.2014.10.038]
  37. Chen C-Y, Zhao X-Q, Yen H-W, Ho S-H, Cheng C-L, Lee D-J, Bai F-W, Chang J-S (2013) Microalgae-based carbohydrates for biofuel production. Biochem Eng J 78:1–10 [DOI: 10.1016/j.bej.2013.03.006]
  38. Chen SM, Tseng KY, Huang CH (2015) Fatty acid composition, sarcoplasmic reticular lipid oxidation, and immunity of hard clam (Meretrix lusoria) fed different dietary microalgae. Fish Shellfish Immunol 45(1):141–145 [DOI: 10.1016/j.fsi.2015.02.025]
  39. Chisti Y (2006) Microalgae as sustainable cell factories. Environ Eng Manag J 5(3):261–274 [DOI: 10.30638/eemj.2006.018]
  40. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306 [DOI: 10.1016/j.biotechadv.2007.02.001]
  41. Cho JH, Kim IH (2011) Fish meal-nutritive value. J Ani Physiol Ani Nutri (Berl) 95(6):685–692 [DOI: 10.1111/j.1439-0396.2010.01109.x]
  42. Cordeiro CM (2019) A corpus-based approach to understanding market access in fisheries and aquaculture international business research: a systematic literature review. Aquac Fisheries 4(6):219–230 [DOI: 10.1016/j.aaf.2019.06.001]
  43. Cordero B, Voltolina D (1997) Viability of mass algal cultures preserved by freezing and freeze-drying. Aquac Eng 16:205–211 [DOI: 10.1016/S0144-8609(97)00001-0]
  44. Craig S, Helfrich LA (2009). Understanding fish nutrition, feeds and feeding. Virginia Polytechnic Institute and State University. Publication 420-256.
  45. D’Alessandro EB, Filho NRA (2016) Concepts and studies on lipid and pigments of microalgae: a review. Renew Sust Energ Rev 58:832–841 [DOI: 10.1016/j.rser.2015.12.162]
  46. Dabrowski K, Kozak B (1979) The use of fishmeal and soybean meal as a protein source in the diet of grass carp fry. Aquaculture 18:107–114 [DOI: 10.1016/0044-8486(79)90023-1]
  47. Dallaire V, Lessard P, Vandenberg G, de la Noue J (2007) Effect of algal incorporation on growth, survival and carcass composition of rainbow trout (Oncorhynchus mykiss) fry. Bioresour Technol 98(7):1433–1439 [DOI: 10.1016/j.biortech.2006.05.043]
  48. Daneshvar E, Antikainen L, Koutra E, Kornaros M, Bhatnagar A (2018) Investigation on the feasibility of Chlorella vulgaris cultivation in a mixture of pulp and aquaculture effluents: treatment of wastewater and lipid extraction. Bioresour Technol 255:104–110 [DOI: 10.1016/j.biortech.2018.01.101]
  49. Dang VT, Li Y, Speck P, Benkendorff K (2011) Effects of micro and macroalgal diet supplementations on growth and immunity of greenlip abalone, Haliotis laevigata. Aquaculture 320(1-2):91–98 [DOI: 10.1016/j.aquaculture.2011.08.009]
  50. Daroch M, Shao C, Liu Y, Geng S, Cheng JJ (2013) Induction of lipids and resultant FAME profiles of microalgae from coastal waters of Pearl River Delta. Bioresour Technol 146:192–199 [DOI: 10.1016/j.biortech.2013.07.048]
  51. De Silva SS, Francis DS, Tacon AGT (2010) Fish oils in aquaculture Fish oil replace. Altern Lipid sources Aquact Feed:1–20
  52. Delaporte M (2003) Effect of a mono-specific algal diet on immune functions in two bivalve species - Crassostrea gigas and Ruditapes philippinarum. J Exp Biol 206(17):3053–3064 [DOI: 10.1242/jeb.00518]
  53. Denstadli V, Skrede A, Krogdahl Å, Sahlstrøm S, Storebakken T (2006) Feed intake, growth, feed conversion, digestibility, enzyme activities and intestinal structure in Atlantic salmon (Salmo salar L.) fed graded levels of phytic acid. Aquaculture 256(1-4):365–376 [DOI: 10.1016/j.aquaculture.2006.02.021]
  54. Ding Z, Zhang Y, Ye J, Du Z, Kong Y (2015) An evaluation of replacing fish meal with fermented soybean meal in the diet of Macrobrachium nipponense: growth, nonspecific immunity, and resistance to Aeromonas hydrophila. Fish Shellfish Immunol 44(1):295–301 [DOI: 10.1016/j.fsi.2015.02.024]
  55. Diver S (2006) Aquaponics-Integration of hydroponics with aquaculture. National Sustainable Agricultural Information Service.
  56. Duy NDQ, Francis DS, Southgate PC (2017) The nutritional value of live and concentrated micro-algae for early juveniles of sandfish, Holothuria scabra. Aquaculture 473:97–104 [DOI: 10.1016/j.aquaculture.2017.01.028]
  57. Ejike CECC, Collins SA, Balasuriya N, Swanson AK, Mason B, Udenigwe CC (2017) Porspects ofmicroalgae proteins in producing peptide- based functional foods for promoting cardiovascular health. Trends Food Sci Technol 59:30–36 [DOI: 10.1016/j.tifs.2016.10.026]
  58. Endut A, Jusoh A, Ali N, Nik WBW, Hassan A (2010) A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system. Bioresour Technol 101(5):1511–1517 [DOI: 10.1016/j.biortech.2009.09.040]
  59. Enduta A, Jusoh A, Ali N, Nik WBW (2011) Nutrient removal from aquaculture wastewater by vegetable production in aquaponics recirculation system. Desalin Water Treat 32(1-3):422–430 [DOI: 10.5004/dwt.2011.2761]
  60. Estim A, Saufie S, Mustafa S (2019) Water quality remediation using aquaponics sub-systems as biological and mechanical filters in aquaculture. J Water Process Eng 30:100566 [DOI: 10.1016/j.jwpe.2018.02.001]
  61. FAO (1980) The state of world fisheries and aquaculture. Fisheries and Aquaculture Department, Rome
  62. FAO (2014) The state of world fisheries and aquaculture. Fisheries and Aquaculture Department, Rome
  63. Faul CN, Holt GJ (2005) Advances in rearing cobia Rachycentron canadum larvae in recirculating aquaculture systems: live prey enrichment and greenwater culture. Aquaculture 249:231–243 [DOI: 10.1016/j.aquaculture.2005.03.033]
  64. Francis G, Makkar HPS, Becker K (2001) Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199:197–227 [DOI: 10.1016/S0044-8486(01)00526-9]
  65. Gagneux-Moreaux S, Moreau C, Gonzalez JL, Cosson RP (2007) Diatom artificial medium (DAM): a new artificial medium for the diatom Haslea ostrearia and other marine microalgae. J Appl Phycol 19:549–556 [DOI: 10.1007/s10811-007-9169-4]
  66. Gamboa-Delgado J, Morales-Navarro YI, Nieto-López MG, Villarreal-Cavazos DA, Cruz-Suárez LE (2019) Assimilation of dietary nitrogen supplied by fish meal and microalgal biomass from Spirulina (Arthrospira platensis) and Nannochloropsis oculata in shrimp Litopenaeus vannamei fed compound diets. J Appl Phycol 31(4):2379–2389 [DOI: 10.1007/s10811-019-1732-2]
  67. García-Ortega A, Kissinger KR, Trushenski JT (2016) Evaluation of fish meal and fish oil replacement by soybean protein and algal meal from Schizochytrium limacinum in diets for giant grouper Epinephelus lanceolatus. Aquaculture 452:1–8 [DOI: 10.1016/j.aquaculture.2015.10.020]
  68. Gladyshev MI, Makhutova ON, Kravchuk ES, Anishchenko OV, Sushchik NN (2016) Stable isotope fractionation of fatty acids of Daphnia fed laboratory cultures of microalgae. Limnologica – Ecol Manag Inland Waters 56:23–29 [DOI: 10.1016/j.limno.2015.12.001]
  69. Gong Y, Guterres HADS, Huntley M, Sorensen M, Kiron V (2018) Digestibility of the defatted microalgae Nannochloropsis sp. and Desmodesmus sp. when fed to Atlantic salmon, Salmo salar. Aquact Nut 24:56–64 [DOI: 10.1111/anu.12533]
  70. Gong Y, Bandara T, Huntley M, Johnson ZI, Dias J, Dahle D, Sørensen M, Kiron V (2019) Microalgae Scenedesmus sp. as a potential ingredient in low fishmeal diets for Atlantic salmon (Salmo salar L.). Aquaculture 501:455–464 [DOI: 10.1016/j.aquaculture.2018.11.049]
  71. Goo BG, Baek G, Choi DJ, Park YI, Synytsya A, Bleha R, Seong DH, Lee CG, Park JK (2013) Characterization of a renewable extracellular polysaccharide from defatted microalgae Dunaliella tertiolecta. Bioresour Technol 129:343–350 [DOI: 10.1016/j.biortech.2012.11.077]
  72. Gouveia L, Gomes E, Empis J (1996) Potential use of a microalga (Chlorella vulgaris) in the pigmentation of rainbow trout (Oncorhynchus mykiss) muscle. Eur Food Res Technol 202(1):75–79
  73. Guedes AC, Malcata FX (2012) Nutritional value and uses of microalgae in aquaculture. Aquaculture 390.
  74. Guldhe A, Misra R, Singh P, Rawat I, Bux F (2016) An innovation electrochemical process to alleviate the challenges for harvesting of small size microalgae by using non-sacrificial carbon electrodes. Algal Res 19:292–298 [DOI: 10.1016/j.algal.2015.08.014]
  75. Guldhe A, Ansari FA, Singh P, Bux F (2017) Heterotrophic cultivation of microalgae using aquaculture wastewater: a biorefinery concept for biomass production and nutrient remediation. Ecol Eng 99:47–53 [DOI: 10.1016/j.ecoleng.2016.11.013]
  76. Guo Z, Liu Y, Guo H, Yan S, Mu J (2013) Microalgae cultivation using an aquaculture wastewater as growth medium for biomass and biofuel production. J Environ Sci 25:S85–S88 [DOI: 10.1016/S1001-0742(14)60632-X]
  77. Gupta PK (2020) Fate, transport, and bioremediation of biodiesel and blended biodiesel in subsurface environment: a review. J Environ Eng 146(1):03119001 [DOI: 10.1061/(ASCE)EE.1943-7870.0001619]
  78. Gupta PK, Yadav BK (2017) Bioremediation of non-aqueous phase liquids (NAPLS) polluted soil and water resources. Environmental Pollutants and their Bioremediation Approaches. Taylor and Francis Group LLC Boca Raton, Florida (FL) United States of America (U.S.A) 241-256.
  79. Gupta SK, Ansari FA, Shriwastav A, Sahoo NK, Rawat I, Bux F (2016) Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. J Clean Prod 115:255–264 [DOI: 10.1016/j.jclepro.2015.12.040]
  80. Hass S, Bauer JL, Adakli A, Meyer S, Lippemeier S, Schwarz S, Schulz C (2016) Marine microalgae Pavlova viridis and Nannochloropsis so. As n-3 PUFA source in diets for juvenile European sea bass (Dicentrarchus labrax). J Appl Phycol 28:1011–1021 [DOI: 10.1007/s10811-015-0622-5]
  81. Hawrot-Paw M, Koniuszy A, Gałczyńska M, Zając G, Szyszlak-Bargłowicz J (2020) Production of microalgal biomass using aquaculture wastewater as growth medium. Water 12(1):106 [DOI: 10.3390/w12010106]
  82. He Y, Lin G, Rao X, Chen L, Jian H, Wang M, Guo Z, Chen B (2018) Microalga Isochrysis galbana in feed for Trachinotus ovatus: effect on growth performance and fatty acid composition of fish fillet and liver. Aquac Int 26(5):1261–1280 [DOI: 10.1007/s10499-018-0282-y]
  83. Hemaiswarya S, Raja R, Kumar RR, Ganesan V, Anbazhagan C (2011) Microalgae: a sustainable feed source for aquaculture. World J Microbiol Biotechnol 27(8):1737–1746 [DOI: 10.1007/s11274-010-0632-z]
  84. Hemere G-I, Mommsen TP, Akrogdahl Å (2002) Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquac Nutr 8(3):175–194 [DOI: 10.1046/j.1365-2095.2002.00200.x]
  85. Ho SH, Chen CY, Chang JS (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252 [DOI: 10.1016/j.biortech.2011.11.133]
  86. Hu J, Nagarajan D, Zhang Q, Chang JS, Lee DJ (2018) Heterotrophic cultivation of microalgae for pigment production: a review. Biotechnol Adv 36(1):54–67 [DOI: 10.1016/j.biotechadv.2017.09.009]
  87. Huang F, Wang L, Zhang C, Song K (2017) Replacemnet of fishmeal with soybean meal and mineral supplemnets in diets of Litopeanaeus vannamei reared in low-salinity water. Aquaculture 473:172–180 [DOI: 10.1016/j.aquaculture.2017.02.011]
  88. Hussein EE, Dabrowski K, El-Saidy DMSD, Lee B (2013) Enhancing the growth of Nile tilapia larvae/juveniles by replacing plant (gluten) protein with algae protein. Aquac Res 44(6):937–949 [DOI: 10.1111/j.1365-2109.2012.03100.x]
  89. Jiang X, Han Q, Gao X, Gao G (2016) Conditions optimising on the yield of biomass, total lipid, and valuable fatty acids in two strains of Skeletonema menzelii. Food Chem 194:723–732 [DOI: 10.1016/j.foodchem.2015.08.073]
  90. Jiang M, Zhao HH, Zai SW, Shepherd B, Wen H, Deng DF (2019) A defatted microalgae meal (Haematococcus pluvialis) as a partial protein source to replace fishmeal for feeding juvenile yellow perch Perca flavescens. J Appl Phycol 31(2):1197–1205 [DOI: 10.1007/s10811-018-1610-3]
  91. Ju ZY, Deng D-F, Dominy W (2012) A defatted microalgae (Haematococcus pluvialis) meal as a protein ingredient to partially replace fishmeal in diets of Pacific white shrimp (Litopenaeus vannamei, Boone, 1931). Aquaculture 354-355:50–55 [DOI: 10.1016/j.aquaculture.2012.04.028]
  92. Kalogeropoulos N, Chiou A, Gavala E, Christea M, Andrikopoulos NK (2010) Nutritional evaluation and bioactive microconstituents (carotenoids, tocopherols, sterols and squalene) of raw and roasted chicken fed on DHA-rich microalgae. Food Res Int 43(8):2006–2013 [DOI: 10.1016/j.foodres.2010.05.018]
  93. Kassim MA, Kirtania K, De La Cruz D, Cura N, Srivatsa SC, Bhattacharya S (2014) Thermogravimetric analysis and kinetic characterization of lipid-extracted Tetraselmis suecica and Chlorella sp. Algal Res 6:39–45 [DOI: 10.1016/j.algal.2014.08.010]
  94. Kent M, Welladsen HM, Mangott A, Li Y (2015) Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS One 10(2):e0118985 [DOI: 10.1371/journal.pone.0118985]
  95. Khatoon N, Sengupta P, Homechaudhuri S, Pal R (2010) Evaluation of algae based feed in goldfish (Carassius auratus) nutrition. Proc Zool Soc 63:109–114 [DOI: 10.1007/s12595-010-0015-3]
  96. Khatoon H, Banerjee S, Syahiran MS, Noordin NBM, Bolong AMA, Endut A (2016) Re-use of aquaculture wastewater in cultivating microalgae as live feed for aquaculture organisms. Desalina Water Treat 57(60):29295–29302 [DOI: 10.1080/19443994.2016.1156030]
  97. Kim SS, Ly HV, Kim J, Lee EY, Woo HC (2015) Pyrolysis of microalgae residual biomass derived from Dunaliella tertiolecta after lipid extraction and carbohydrate saccharification. Chem Eng J 263:194-199 [DOI: 10.1016/j.cej.2014.11.045]
  98. Kiron V (2012) Fish immune system and its nutritional modulation for preventive health care. Anim Feed Sci Technol 173:111–133 [DOI: 10.1016/j.anifeedsci.2011.12.015]
  99. Knuckey RM, Semmens GL, Mayer RJ, Rimmer MA (2005) Development of an optimal micro algal diet for the culture of the calanoid copepod Acartia sinjiensis: effect of algal species and feed concentration on copepod development. Aquaculture 249:339–351 [DOI: 10.1016/j.aquaculture.2005.02.053]
  100. Knutsen HR, Johnsen IH, Keizer S, Sørensen M, Roques JAC, Hedén I, Sundell K, Hagen Ø (2019a) Fish welfare, fast muscle cellularity, fatty acid and body-composition of juvenile spotted wolffish (Anarhichas minr) fed a combination of plant proteins and microalgae (Nannochloropsis oceanica). Aquaculture 506:212–223 [DOI: 10.1016/j.aquaculture.2019.03.043]
  101. Knutsen HR, Ottesen OH, Palihawadana AM, Sandaa W, Sørensen M, Hagen Ø (2019b) Muscle growth and changes in chemical composition of spotted wolffish juveniles (Anarhichas minor) fed diets with and without microalgae (Scenedesmus obliquus). Aquacult Rep 13:100175 [DOI: 10.1016/j.aqrep.2018.11.001]
  102. Kokou F, Fountoulaki E (2018) Aquaculture waste production associated with antinutrient presence in common fish feed plant ingredients. Aquaculture 495:295–310 [DOI: 10.1016/j.aquaculture.2018.06.003]
  103. Kousoulaki K, Mørkøre T, Nengas I, Berge RK, Sweetman J (2016) Microalgae and organic minerals enhance lipid retention efficiency and fillet quality in Atlantic salmon (Salmo salar L.). Aquaculture 451:47–57 [DOI: 10.1016/j.aquaculture.2015.08.027]
  104. Krogdhal A, Penn M, Thorsen J, Refstie S, Bakke AM (2010) Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquac Res 41:333–344 [DOI: 10.1111/j.1365-2109.2009.02426.x]
  105. Kuo CM, Jian JF, Lin TH, Chang YB, Wan XH, Lai JT, Chang JS, Lin CS (2016) Simultaneous microalgal biomass production and CO2 fixation by cultivating Chlorella sp. GD with aquaculture wastewater and boiler flue gas. Bioresour Technol 221:241–250 [DOI: 10.1016/j.biortech.2016.09.014]
  106. Kupchinsky ZA, Coyle SD, Bright LA, Tidwell JH (2015) Evaluation of heterotrphiv algae meal as a diet ingredient for Channel catfisg, Ictaluurus punctatus. J World Aquaclt Soc 46(4):445–452 [DOI: 10.1111/jwas.12200]
  107. Lagarde M (2008) Docosahexaenoic acid: Nutrient and precursor of bioactive lipids. Eur J Lipid Sci Technol 110(8):673–678 [DOI: 10.1002/ejlt.200800087]
  108. Lam SS, Ma NL, Jusoh A, Ambak MA (2015) Biological nutrient removal by recirculating aquaponic system: optimization of the dimension ration between the hydroponic and rearing tank components. Int Biodeterior Biodegrad 102:107e115 [DOI: 10.1016/j.ibiod.2015.03.012]
  109. Lemahieu C, Bruneel C, Termote-Verhalle R, Muylaert K, Buyse J, Foubert I (2013) Impact of feed supplementation with different omega-3 rich microalgae species on enrichment of eggs of laying hens. Food Chem 141(4):4051–4059 [DOI: 10.1016/j.foodchem.2013.06.078]
  110. Li MH, Robinson EH, Tucker CS, Manning BB, Khoo L (2009) Effects of dried algae Schizochytrium sp., a rich source of docosahexaenoic acid, on growth, fatty acid composition, and sensory quality of channel catfish Ictalurus punctatus. Aquaculture 292:232–236 [DOI: 10.1016/j.aquaculture.2009.04.033]
  111. Llagostera PF, Kallas Z, Reig L, de Gea DA (2019) The use of insect meal as a sustainable feeding alternative in aquaculture: current situation, Spanish consumers’ perceptions and willingness to pay. J Clean Prod 229:10–21 [DOI: 10.1016/j.jclepro.2019.05.012]
  112. Lober M, Zeng C (2009) Effect of microalgae concentration on larval survival, development and growth of an Australian strain of giant freshwater prawn Macrobrachium resenbergii. Aquaculture 289:95–100 [DOI: 10.1016/j.aquaculture.2009.01.008]
  113. Lum KK, Kim J, Lei XG (2013) Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. J Ani Sci Biotechnol 4:53 [DOI: 10.1186/2049-1891-4-53]
  114. Macias-Sancho J, Poersch LH, Bauer W, Romano LA, Wasielesky W, Tesser MB (2014) Fishmeal substitution with Arthrospira (Spirulina platensis) in a practical diet for Litopenaeus vannamei: effects on growth and immunological parameters. Aquaculture 426-427:120–125 [DOI: 10.1016/j.aquaculture.2014.01.028]
  115. Malibari R, Sayegh F, Elazzazy AM, Baeshen MN, Dourou M, Aggelis G (2018) Reuse of shrimp farm wastewater as growth medium for marine microalgae isolated from Red Sea- Jeddah. J Clean Prod 198:160–169 [DOI: 10.1016/j.jclepro.2018.07.037]
  116. Matos AP, Feller R, Moecke EH, Sant'Anna ES (2015) Biomass, lipid productivities and fatty acids composition of marine Nannochloropsis gaditana cultured in desalination concentrate. Bioresour Technol 197:48–55 [DOI: 10.1016/j.biortech.2015.08.041]
  117. McLellan MR (1989) Cryopreservation of diatoms. Diatom Res 4:301-318 [DOI: 10.1080/0269249X.1989.9705078]
  118. Milledge JJ (2011) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol 10:31–41 [DOI: 10.1007/s11157-010-9214-7]
  119. Miranda LE, Coppola G, Boxrucker J (2020) Reservoir fish habitats: a perspective on coping with climate change. Rev Fish Sci Aquac 4:478–498 [DOI: 10.1080/23308249.2020.1767035]
  120. Misurcova L, Bunka F, Vavra Ambrozova J, Machu L, Samek D, Kracmar S (2014) Amino acid composition of algal products and its contribution to RDI. Food Chem 151:120–125 [DOI: 10.1016/j.foodchem.2013.11.040]
  121. Morris GJ (1976a) The cryopreservation of Chlorella.1. Interactions of rate of cooling, protective addition and warming rate. Arch Microbiol 107:57–62 [DOI: 10.1007/BF00427867]
  122. Morris GJ (1976b) The cryopreservation of Chlorella. 2. Effect of growth temperature on freezing tolerance. Arch Microbiol 107:309–312 [DOI: 10.1007/BF00425345]
  123. Muller-Feuga A (2000) The role of microalgae in aquaculture: situation and trends. J Appl Phycol 12:527–534 [DOI: 10.1023/A]
  124. Nakagawa H, Gomez-Diaz G (1995) Usefulness of Spirulina sp. meal as feed additive for giant freshwater prawn, Macrobrachium rosenbergii. Suisan Zoshoku 43:521–526
  125. Nasir NM, Yunos FHM, Jusoh HHW, Mohammad A, Lam SS, Jusoh A (2019) Subtopic: advances in water and wastewater treatment harvesting of Chlorella sp. microalgae using Aspergillus niger as bio-flocculant for aquaculture wastewater treatment. J Environ Manag 249:109373 [DOI: 10.1016/j.jenvman.2019.109373]
  126. Neumann P, Torres A, Fermoso FG, Borja R, Jeison D (2015) Anaerobic co-digestion of lipid-spent microalgae with waste activated sludge and glycerol in batch mode. Int Biodeterior Biodegrad 100:85–88 [DOI: 10.1016/j.ibiod.2015.01.020]
  127. Nguyen NT (2008) The utilization of soybean products in Tilapia Feed. 8 International Symposium on Tilapia in Aquaculture 53-65.
  128. Novoveská L, Ross ME, Stanley MS, Pradellles R, Wasiolek V, Sassi JF (2019) Microalgal carotenoids: a review of production, current markets, regulations, and future direction. Mar Drugs 17:1–21 [DOI: 10.3390/md17110640]
  129. Oliveira CYB, Oliveira CDL, Prasad R, Ong HC, Araujo ES, Shabnam N, Gálvez AO (2021) A multidisciplinary review of Tetradesmus obliquus: a microalga suitable for large-scale biomass production and emerging environmental applications. Rev Aquac 13(3):1594–1618
  130. Origin oil (2013) Use of algae as aquafeed to improve production in aquaculture operations. Los Angeles. CA 90016.
  131. Palmegiano GB, Agradi FG, Gai F, Gasco L, Rigamont E, Sicuro B, Zoccarato I (2005) Spirulina as a nutrient source in diets for growing sturgeon (Acipenser baeri). Aquac Res 36(2):188–195 [DOI: 10.1111/j.1365-2109.2005.01209.x]
  132. Palmer PJ, Burke MJ, Palmer CJ, Burke JB (2007) Development in controlled green-water larval culture technologies for estuarine fishes in Queensland, Australia and elsewhere. Aquaculture 272:1–21
  133. Pancha I, Chokshi K, Ghosh T, Paliwal C, Maurya R, Mishra S (2015) Bicarbonate supplementation enhanced biofuel production potential as well as nutritional stress mitigation in the microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol 193:315–323 [DOI: 10.1016/j.biortech.2015.06.107]
  134. Parimi NS, Singh M, Kastner JR, Das KC, Forsberg LS, Azadi P (2015) Optimization of protein extraction from Spirulina platensis to generate a potential co-product and a biofuel feedstock with reduced nitrogen content. Front Energy Res 3:1–9 [DOI: 10.3389/fenrg.2015.00030]
  135. Patil V, Reitan KI, Knutsen G, Mortensen LM, Källqvist T, Olsen E, Vogt G, Gislerød HR (2005) Microalgae as source of polyunsaturated fatty acids for aquaculture. Curr Top Plant Biol 6:57–65
  136. Patterson D, Gatlin DM (2013) Evaluation of whole and lipid-extracted algae meals in the diets of juvenile red drum (Sciaenops ocellatus). Aquaculture 416-417:92–98 [DOI: 10.1016/j.aquaculture.2013.08.033]
  137. Paudel SR (2020) Nitrogen transformation in engineered aquaponics with water celery (Ocenathe javanica) and koi carp (Cyprinus carpio): Effects of plant to fish biomass ratio. Aquaculture 520:734971 [DOI: 10.1016/j.aquaculture.2020.734971]
  138. Peng YY, Gao F, Yang HL, Li C, Lu MM, Yang ZY (2020) Simultaneous removal of nutrient and sulfonamides from marine aquaculture wastewater by concentrated and attached cultivation of Chlorella vulgaris in an algal biofilm membrane photobioreactor (BF-MPBR). Sci Total Environ 725:138524 [DOI: 10.1016/j.scitotenv.2020.138524]
  139. Prajapati SK, Malik A, Vijay VK (2014) Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion. Appl Energy 114:790–797 [DOI: 10.1016/j.apenergy.2013.08.021]
  140. Prem R, Tewari VK (2020) Development of human-powered fish feeding machine for freshwater aquaculture farms of developing countries. Aquac Eng 88:102028 [DOI: 10.1016/j.aquaeng.2019.102028]
  141. Priyadarshani I, Rath B (2012) Commercial and industrial applications of micro algae – a review. J Algal Biomass Uti 3:89–100
  142. Qiao H, Cong C, Sun C, Li B, Wang J, Zhang L (2016) Effect of culture conditions on growth, fatty acid composition and DHA/EPA ratio of Phaeodactylum tricornutum. Aquaculture 452:311–317 [DOI: 10.1016/j.aquaculture.2015.11.011]
  143. Radhakrishnan S, Bhavan PS, Seenivasan C, Shanthi R, Muralisankar T (2014) Replacement of fishmeal with Spirulina platensis, Chlorella vulgaris and Azolla pinnata on non-enzymatic and enzymatic antioxidant activities of Macrobrachium rosenbergii. J Basic Appl Zool 67(2):25–33 [DOI: 10.1016/j.jobaz.2013.12.003]
  144. Radhakrishnan S, Belal IEH, Seenivasan C, Muralisankar T, Bhavan PS (2016) Impact of fishmeal replacement with Arthrospira platensis on growth performance, body composition and digestive enzyme activities of the freshwater prawn, Macrobrachium rosenbergii. Aquacult Rep 3:35–44 [DOI: 10.1016/j.aqrep.2015.11.005]
  145. Ratledge C (2010) “Single cell oils for the 21st century,” in: single cell oils. Microbial and algal oils, Cohen, Z. and Ratledge, C. (ed.), AOCS Press, Urbana, 3.
  146. Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88(10):3411–3424 [DOI: 10.1016/j.apenergy.2010.11.025]
  147. Ren H, Tuo J, Addy MM, Zhang R, Lu Q, Anderson E, Chen P, Ruan R (2017) Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal. Bioresour Technol 245:1130–1138 [DOI: 10.1016/j.biortech.2017.09.040]
  148. Rossi W, Davis DA (2012) Replacement of fishmeal with poultry by-product meal in the diet of Florida pompano Trachinotus carolinus L. Aquaculture 338-341:160–166 [DOI: 10.1016/j.aquaculture.2012.01.026]
  149. Roy SS, Pal R (2014) Microalgae in aquaculture: a review with special references to nutritional value and fish dietetics. Proc Zool Soc 68(1):1–8 [DOI: 10.1007/s12595-013-0089-9]
  150. Ruxton CHS, Reed SC, Simpson MJA, Millington KJ (2007) The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. J Hum Nutr Diet 20:275–285 [DOI: 10.1111/j.1365-277X.2007.00770.x]
  151. Ryckebosch E, Bruneel C, Termote-Verhalle R, Goiris K, Muylaert K, Foubert I (2014) Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem 160:393–400 [DOI: 10.1016/j.foodchem.2014.03.087]
  152. Sahu A, Pancha I, Jain D, Paliwal C, Ghosh T, Patidar S, Bhattacharya S, Mishra S (2013) Fatty acids as biomarkers of microalgae. Phytochemistry 89:53–58 [DOI: 10.1016/j.phytochem.2013.02.001]
  153. Sarker PK, Kapuscinski AR, Bae AY, Donaldson E, Sitek AJ, Fitzgerald DS, Edelson OF (2018) Towards sustainable aquafeeds: evaluating substitution of fishmeal with lipid-extracted microalgal co-product (Nannochloropsis oculata) in diets of juvenile Nile tilapia (Oreochromis niloticus). PLoS One 13(7):e0201315 [DOI: 10.1371/journal.pone.0201315]
  154. Satoh S, Poe WE, Wilson RP (1989) Effect of supplemented phytates and/or tricalcium phosphate on weight gain, feed efficiency and zinc content in vertebrae of channel catfish. Aquaculture 80:155–161 [DOI: 10.1016/0044-8486(89)90281-0]
  155. Schwenzfeier A, Wierenga PA, Gruppen H (2011) Isolation and characterization of soluble protein from the green microalgae Tetraselmis sp. Bioresour Technol 102(19):9121–9127 [DOI: 10.1016/j.biortech.2011.07.046]
  156. Sepúlveda C, Acién FG, Gómez C, Jiménez-Ruíz N, Riquelme C, Molina-Grima E (2015) Utilization of centrate for the production of the marine microalgae Nannochloropsis gaditana. Algal Res 9:107–116 [DOI: 10.1016/j.algal.2015.03.004]
  157. Shaalan M, El-Mahdy M, Saleh M, El-Matbouli M (2018) Aquaculture in Egypt: insights on the current trends and future perspectives for sustainable development. Rev Fish Sci Aquac 26(1):99–110 [DOI: 10.1080/23308249.2017.1358696]
  158. Sharawy Z, Goda AMAS, Hassaan MS (2016) Partial or total replacement of fish meal by solid state fermented soybean meal with Saccharomyces cerevisiae in diets for Indian prawn shrimp, Fenneropenaeus indicus, Postlarvae. Anim Feed Sci Technol 212:90–99 [DOI: 10.1016/j.anifeedsci.2015.12.009]
  159. Shriwastav A, Gupta SK, Ansari FA, Rawat I, Bux F (2014) Adaptability of growth and nutrient uptake potential of Chlorella sorokiniana with variable nutrient loading. Bioresour Technol 174:60–66 [DOI: 10.1016/j.biortech.2014.09.149]
  160. Silva-Carrillo Y, Hernández C, Hardy RW, González-Rodríguez B, Castillo-Vargasmachuca S (2012) The effect of substituting fish meal with soybean meal on growth, feed efficiency, body composition and blood chemistry in juvenile spotted rose snapper Lutjanus guttatus (Steindachner, 1869). Aquaculture 364-365:180–185 [DOI: 10.1016/j.aquaculture.2012.08.007]
  161. Singh P, Guldhe A, Kumari S, Rawat I, Bux F (2015) Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology. Biochem Eng J 94:22–29 [DOI: 10.1016/j.bej.2014.10.019]
  162. Sirakov I, Velichkova K, Stoyanova S, Staykov Y (2015) The importance of microalgae for aquaculture industry. Review. Int J Fish Aquat Stud 2:81–84
  163. Soeder CJ (1986) An historical outline of applied algology. CRC Press, Boca Raton, FL
  164. Solana M, Rizza CS, Bertucco A (2014) Exploiting microalgae as a source of essential fatty acids by supercritical fluid extraction of lipids: comparison between Scenedesmus obliquus, Chlorella protothecoides and Nannochloropsis salina. J Supercrit Fluids 92:311–318 [DOI: 10.1016/j.supflu.2014.06.013]
  165. Sommer TR, Potts WT, Morrisy NM (1991) Utilization of microalgal astaxanthin by rainbow trout (Oncorhynchus mykiss). Aquaculture 94(1):79–88 [DOI: 10.1016/0044-8486(91)90130-Y]
  166. Sørensen M, Berge GM, Reitan KI, Ruyter B (2016) Microalga Phaeodactylum tricornutum in feed for the Atlantic salmon (Salmo salar) - effect on nutrient digestibility, growth and utilization of feed. Aquaculture 460:116–123 [DOI: 10.1016/j.aquaculture.2016.04.010]
  167. Sørensen M, Gong Y, Bjarnason F, Vasanth GK, Dahle D, Huntley M, Kiron V (2017) Nannochloropsis oceania-derived defatted meals as an alternative to fishmeal in Atlantic salmon feeds. PLoS One 12(7):e0179907 [DOI: 10.1371/journal.pone.0179907]
  168. Southgate PC, Braley RD, Militz TA (2017) Ingestion and digestion of micro-algae concentrates by veliger larvae of the giant clam, Tridacna noae. Aquaculture 473:443–448 [DOI: 10.1016/j.aquaculture.2017.02.032]
  169. Spinelli J, Houle CR, Wekell JC (1983) The effect of phytates on the growth of rainbow trout (Salmo gairdneri) fed purified diets containing varying quantities of calcium and magnesium. Aquaculture 30(1-4):71-83
  170. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96 [DOI: 10.1263/jbb.101.87]
  171. Sprague M, Walton J, Campbell PJ, Strachan F, Dick JR, Bell JG (2015) Replacement of fish oil with a DHA-rich algal meal derived from Schizochytrium sp. on the fatty acid and persistent organic pollutant levels in diets and flesh of Atlantic salmon (Salmo salar) post-smolts. Food Chem 185:413–421 [DOI: 10.1016/j.foodchem.2015.03.150]
  172. Stephenson PG, Moore CM, Terry MJ, Zubkov MV, Bibby TS (2011) Improving photosynthesis for algal biofuels: toward a green revolution. Trends Biotechnol 29:615–623 [DOI: 10.1016/j.tibtech.2011.06.005]
  173. Subhash GV, Chugh N, Iyer S, Waghmare A, Musale AS, Nandru R, Dixit RB, Gaikwad MS, Menon D, Throat R, Kumar GRK, Nagle V, Sagaram US, Dasgupta S (2020) Application of invitro protein solubility for selection of microalgae biomass as protein ingredient in animal and aquafeed. J Appl Phycol 32:3955–3970 [DOI: 10.1007/s10811-020-02235-9]
  174. Suh S-S, Kim SJ, Hwang J, Park M, Lee T-K, Kil E-J, Lee S (2015) Fatty acid methyl ester profiles and nutritive values of 20 marine microalgae in Korea. Asian Pac J Trop Med 8(3):191–196 [DOI: 10.1016/S1995-7645(14)60313-8]
  175. Tacon AGJ, Lemos D, Metian M (2020) Fish for health: improved nutritional quality of cultured fish for human consumption. Rev Fish Sci Aquac 28(4):449–458 [DOI: 10.1080/23308249.2020.1762163]
  176. Takano M, Sado JI, Ogawa T, Terui G (1973) Freezing and freeze-drying of Spin F a platensis. Cryobiology 10:440–444 [DOI: 10.1016/0011-2240(73)90073-4]
  177. Tang DYY, Khoo KS, Chew KW, Tao Y, Ho SH, Show PL (2020) Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresour Technol 304:122997 [DOI: 10.1016/j.biortech.2020.122997]
  178. Tejido-Nuñez Y, Aymerich E, Sancho L, Refardt D (2020) Co-cultivation of microalgae in aquaculture water: interactions, growth and nutrient removal efficiency at laboratory-and pilot-scale. Algal Res 49:101940 [DOI: 10.1016/j.algal.2020.101940]
  179. Tibaldi E, Zittelli GC, Parisi G, Bruno M, Giorgi G, Tulli F, Venturini S, Tredici MR, Poli BM (2015) Growth performance and quality traits of European sea bass (D. labrax) fed diets including increasing levels of freeze-dried Isochrysis sp. (T. ISO) biomass as a source of protein and n-3 long chain PUFA in partial substitution of fish derivatives. Aquaculture 440:60–80 [DOI: 10.1016/j.aquaculture.2015.02.002]
  180. Tibbetts SM, Bjornsson WJ, McGinn PJ (2015a) Biochemical composition and amino acid profiles of Nannochloropsis granulata algal biomass before and after supercritical fluid CO2 extraction at two processing temperatures. Anim Feed Sci Technol 204:62–71 [DOI: 10.1016/j.anifeedsci.2015.04.006]
  181. Tibbetts SM, Whitney CG, MacPherson MJ, Bhatti S, Banskota A, Stefanova R, McGinn PJ (2015b) Biochemical characterization of microalgal biomass from freshwater species isolated in Alberta, Canada for animal feed applications. Algal Res 11:435–447 [DOI: 10.1016/j.algal.2014.11.011]
  182. Tibbetts SM, Melanson RJ, Park KC, Banskota AH, Stefanova R, Mcginn PJ (2015c) Nutritional evaluation of whole and lipid-extracted biomass of the microalga Scenedesmus sp. AMDD isolated in Saskatchewan, Canada for animal feeds : proximate, amino acid, fatty acid, carotenoid and elemental composition. Curr Biotechnol 4:1–17
  183. Tibbetts SM, Yasumaru F, Lemos D (2017) In Vitro prediction of digestible protein content of marine microalgae (Nannochloropsis granulata) meals for Pacific white shrimp (Litopenaeus vannamei) and rainbow trout (Oncorhynchus mykiss). Algal Res 21:76–80 [DOI: 10.1016/j.algal.2016.11.010]
  184. Tibbetts SM, Patelakis SJ, Whitney-Lalonde CG, Garrison LL, Wall CL, MacQuarrie SP (2020) Nutrient composition and protein quality of microalgae meals produced from the marine prymnesiophyte Pavlova sp. 459 mass-cultivated in enclosed photobioreactors for potential use in salmonid aquafeeds. J Appl Phycol 32:299–318 [DOI: 10.1007/s10811-019-01942-2]
  185. Tossavainen M, Lahti K, Edelmann M, Eskola R, Lampi AM, Piironen V, Korvonen P, Ojala A, Romantschuk M (2019) Integrated utilization of microalgae cultured in aquaculture wastewater: wastewater treatment and production of valuable fatty acids and tocopherols. J Appl Phycol 31:1753–1763 [DOI: 10.1007/s10811-018-1689-6]
  186. Tredici MR, Rodolfi L, Biondi N, Bassi N, Sampietro G (2016) Techno-economic analysis ofmicroalgal biomass production on 1-ha green wall panel (GWP ®) plant. Algal Res 19:253–263 [DOI: 10.1016/j.algal.2016.09.005]
  187. Tsai HP, Chuang LT, Chen CN (2016) Production of long chain omega-3 fatty acids and carotenoids in tropical areas by a new heat-tolerant microalga Tetraselmis sp. DS3. Food Chem 19:82–90
  188. Turchini GM, Torstensen BE, Ng W-K (2009) Fish oil replacement in finfish nutrition. Rev Aquac 1(1):10–57 [DOI: 10.1111/j.1753-5131.2008.01001.x]
  189. Vardon DR, Sharma BK, Blazina GV, Rajagopalan K, Strathmann TJ (2012) Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour Technol 109:178-87 [DOI: 10.1016/j.biortech.2012.01.008]
  190. Viegas C, Gouveia L, Gonçalves (2021) Aquaculture wastewater treatment trough microalgal.Biomass potential appplications on animal feed, agricultural, and energy. J Environ Manag 286:112187 [DOI: 10.1016/j.jenvman.2021.112187]
  191. Vizcaíno J, López G, Sáez MI, Jiménez JA, Barros A, Hidalgo L, Camacho-Rodríguez J, Martínez TF, Cerón-García MC, Alarcón FJ (2014) Effects of the microalga Scenedesmus almeriensis as fishmeal alternative in diets for gilthead sea bream, Sparus aurata, juveniles. Aquaculture 431:34–43 [DOI: 10.1016/j.aquaculture.2014.05.010]
  192. von Danwitz A, Schulz C (2020) Effects of dietary rapeseed glucosinolates, sinapic acid and phytic acid on feed intake, growth performance and fish health in turbot (Psetta maxima L.). Aquaculture 516:734624 [DOI: 10.1016/j.aquaculture.2019.734624]
  193. Waite R, Beveridge M, Brummett R, Castine S, Chaiyawannakarn N, Kaushik S, Mungkung R, Nawapakpilai S, Phillips M (2014) Improving productivity and environmental performance of aquaculture. World Fish.
  194. Waldenstedt L, Inborr J, Hansson I, Elwinger K (2003) Effects of astaxanthin-rich algal meal (Haematococcus pluvalis) on growth performance, caecal campylobacter and clostridial counts and tissue astaxanthin concentration of broiler chickens. Anim Feed Sci Technol 108:119–132 [DOI: 10.1016/S0377-8401(03)00164-0]
  195. Walker A, Berlinsky DL (2011) Effects of partial replacement of fish meal protein by microalgae on growth, feed intake, and body composition of atlantic cod. N Am J Aquac 73:76–83 [DOI: 10.1080/15222055.2010.549030]
  196. Wang Y, Guo WQ, Lo YC, Chang JS, Ren NQ (2014) Characterization and kinetics of bio-butanol production with Clostridium acetobutylicum ATCC824 using mixed sugar medium simulating microalgae-based carbohydrates. Biochem Eng J 91:220–230 [DOI: 10.1016/j.bej.2014.08.007]
  197. Wang Y, Ho S, Cheng C, Guo W, Nagarajan D, Ren N (2016) Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresour Technol 222:485–497 [DOI: 10.1016/j.biortech.2016.09.106]
  198. Wuang SC, Khin MC, Chua PQ, Luo YD (2016) Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Res 15:59–64 [DOI: 10.1016/j.algal.2016.02.009]
  199. Yaakob Z, Ali E, Zainal A, Mohamad M, Takriff M (2014) An overview: biomolecules from microalgae for animal feed and aquaculture. J Biol Res 21:6Yun Y-M, Cho, S-K, Jung K-W, Kim M-S, Shin HS, Kim DH (2014) Inhibitory effect of chloroform on fermentative hydrogen and methane production from lipid etracted microalgae. Int J Hydrog Energy 39:19256–19261
  200. Yadav G, Meena DK, Sahoo AK, Das BK, Sen R (2020) Effective valorization of microalgal biomass for the production of nutritional fish-feed supplements. J Clean Prod 243:118697 [DOI: 10.1016/j.jclepro.2019.118697]
  201. Younis ES, Al-Quffail AS, Al-Asgah NA, Abdel-Warith AW, Al-Hafedh YS (2018) Effect of dietary fish meal replacement by red algae, Gracilaria arcuata, on growth performance and body composition of Nile tilapia Oreochromis niloticus. Saudi J Biol Sci 25(2):198–203 [DOI: 10.1016/j.sjbs.2017.06.012]
  202. Yun YM, Cho SK, Jung KW, Kim MS, Shin HS, Kim DH (2014) Inhibitory effect of chloroform on fermentative hydrogen and methane production from lipid-extracted microalgae. Int J hydrogen energy 39:19256-19261 [DOI: 10.1016/j.ijhydene.2014.04.167]
  203. Zhao G, Chen X, Wang L, Zhou S, Feng H, Chen WN, Lau R (2013) Ultrasound assisted extraction of carbohydrates from microalgae as feedstock for yeast fermentation. Bioresour Technol 128:337–344 [DOI: 10.1016/j.biortech.2012.10.038]
  204. Zhao X, Zhou Y, Huang S, Qiu D, Schideman L, Chai X, Zhao Y (2014) Characterization of microalgae-bacteria consortium cultured in landfill leachate for carbon fixation and lipid production. Bioresour Technol 156:322–328 [DOI: 10.1016/j.biortech.2013.12.112]
  205. Zhou W, Wang Z, Xu J, Ma L (2018) Cultivation of microalgae Chlorella zofingiensis on municipal wastewater and biogas slurry towards bioenergy. J Biosci Bioeng 126(5):644–648 [DOI: 10.1016/j.jbiosc.2018.05.006]

Grants

  1. TBS13-00019-OC/Technology Innovation Agency (ZA)

MeSH Term

Animal Feed
Animals
Aquaculture
Biomass
Feasibility Studies
Microalgae
Wastewater

Chemicals

Waste Water

Word Cloud

Created with Highcharts 10.0.0feedaquaculturealgaefishcostmicroalgaeindustryfoodnutritionalvalueMicroalgaeproducerFishpotentialplant-basedusedchallengeslowwastewateressentialacidsreviewapplicationusingefficientedibleproteingrowsfastersectorThereforerequiresenormousamountsdirectlyaffectsqualityproducedhealthbenefitsmealFMfisoilFOsupplementspredominantlyfaceavailabilityhighassociatedrepresents40-75%productiononekeymarketdriversthrivingprimaryaquaticchainsexpandingcontinuouslyrenewableenergypharmaceuticalpigmenttreatmentindustriesMajorcomponentsmicroalgalbiomassproteinsaminolipidspolyunsaturatedfattyPUFAcarbohydratespigmentsbioactivecompoundsThuscanviablealternativeingredientrecenttimesliveculturewholelipid-extractedLEAtestedgrowthphysiologicalactivitypresentdiscussesmodepossiblereplacementconventionalingredientsdisadvantagesalsofocusesintegratedprocessescultivationaquaponicssystemsfutureprospectsaquafeedImprovingfeasibilityAquacultureCarbohydratesLipidextractedProteins

Similar Articles

Cited By