Future trends in measuring physiology in free-living animals.

H J Williams, J Ryan Shipley, C Rutz, M Wikelski, M Wilkes, L A Hawkes
Author Information
  1. H J Williams: Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany.
  2. J Ryan Shipley: Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany.
  3. C Rutz: Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK.
  4. M Wikelski: Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany.
  5. M Wilkes: Extreme Environments Research Group, University of Portsmouth, Spinnaker Building, Cambridge Road, Portsmouth PO1 2EF, UK.
  6. L A Hawkes: Hatherly Laboratories, University of Exeter, College of Life and Environmental Sciences, Exeter EX4 4PS, UK.

Abstract

Thus far, ecophysiology research has predominantly been conducted within controlled laboratory-based environments, owing to a mismatch between the recording technologies available for physiological monitoring in wild animals and the suite of behaviours and environments they need to withstand, without unduly affecting subjects. While it is possible to record some physiological variables for free-living animals using animal-attached logging devices, including inertial-measurement, heart-rate and temperature loggers, the field is still in its infancy. In this opinion piece, we review the most important future research directions for advancing the field of 'physiologging' in wild animals, including the technological development that we anticipate will be required, and the fiscal and ethical challenges that must be overcome. Non-invasive, multi-sensor miniature devices are ubiquitous in the world of human health and fitness monitoring, creating invaluable opportunities for animal and human physiologging to drive synergistic advances. We argue that by capitalizing on the research efforts and advancements made in the development of human wearables, it will be possible to design the non-invasive loggers needed by ecophysiologists to collect accurate physiological data from free-ranging animals ethically and with an absolute minimum of impact. In turn, findings have the capacity to foster transformative advances in human health monitoring. Thus, we invite biomedical engineers and researchers to collaborate with the animal-tagging community to drive forward the advancements necessary to realize the full potential of both fields. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.

Keywords

References

  1. Mov Ecol. 2017 Mar 27;5:6 [PMID: 28357113]
  2. Integr Zool. 2019 Jan;14(1):48-64 [PMID: 30251470]
  3. Philos Trans R Soc Lond B Biol Sci. 2021 Aug 16;376(1831):20200349 [PMID: 34176327]
  4. Philos Trans R Soc Lond B Biol Sci. 2021 Aug 16;376(1831):20200228 [PMID: 34176326]
  5. Front Zool. 2016 Feb 11;13:7 [PMID: 26870151]
  6. Nat Med. 2018 Dec;24(12):1830-1836 [PMID: 30297910]
  7. Thorax. 2019 May;74(5):512-518 [PMID: 30826734]
  8. Physiol Rev. 1991 Oct;71(4):1135-72 [PMID: 1924550]
  9. J Exp Biol. 2019 Mar 1;222(Pt 5): [PMID: 30824569]
  10. Science. 2007 Nov 2;318(5851):765 [PMID: 17916693]
  11. Biol Lett. 2009 Jun 23;5(3):289-92 [PMID: 19324624]
  12. Crit Care Med. 2013 Feb;41(2):423-32 [PMID: 23263574]
  13. Am J Physiol Regul Integr Comp Physiol. 2016 Oct 1;311(4):R788-R796 [PMID: 27581813]
  14. Curr Biol. 2020 Sep 21;30(18):3657-3663.e5 [PMID: 32707063]
  15. Comp Biochem Physiol A Mol Integr Physiol. 2016 Dec;202:38-52 [PMID: 27421239]
  16. Anal Chem. 2015 Jan 6;87(1):394-8 [PMID: 25496376]
  17. Science. 2015 Jun 12;348(6240):1255642 [PMID: 26068859]
  18. J Exp Biol. 2005 Nov;208(Pt 22):4231-41 [PMID: 16272246]
  19. Physiol Meas. 2019 Aug 02;40(7):07TR01 [PMID: 31195383]
  20. Angew Chem Int Ed Engl. 2019 Jul 29;58(31):10506-10513 [PMID: 31157485]
  21. J Wildl Dis. 2016 Apr;52(2 Suppl):S65-77 [PMID: 26845301]
  22. Curr Biol. 2015 Aug 31;25(17):2278-83 [PMID: 26279232]
  23. Science. 2018 Jan 26;359(6374):466-469 [PMID: 29371471]
  24. Physiology (Bethesda). 2019 Mar 1;34(2):101-111 [PMID: 30724130]
  25. PLoS One. 2017 Aug 30;12(8):e0180269 [PMID: 28854247]
  26. Nat Commun. 2015 Nov 03;6:7197 [PMID: 26529116]
  27. N Engl J Med. 2020 Feb 20;382(8):727-733 [PMID: 31978945]
  28. Nature. 2020 Apr;580(7801):87-92 [PMID: 32238927]
  29. J Comp Physiol B. 2020 Sep;190(5):629-640 [PMID: 32617718]
  30. BMJ. 2000 Mar 18;320(7237):759-63 [PMID: 10720361]
  31. J Exp Biol. 2020 Feb 28;223(Pt 5): [PMID: 32041802]
  32. Elife. 2019 Sep 03;8: [PMID: 31478481]
  33. Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2199-204 [PMID: 23341596]
  34. Comp Biochem Physiol A Mol Integr Physiol. 2021 Mar;253:110849 [PMID: 33227435]
  35. Science. 2015 Jan 16;347(6219):250-4 [PMID: 25593180]
  36. Physiology (Bethesda). 2015 Mar;30(2):116-26 [PMID: 25729057]
  37. ACS Sens. 2019 Jan 25;4(1):32-43 [PMID: 30525471]
  38. Nat Commun. 2016 Aug 03;7:12468 [PMID: 27485308]
  39. Nat Methods. 2014 Dec;11(12):1242-4 [PMID: 25362361]
  40. Sci Rep. 2019 Oct 22;9(1):15152 [PMID: 31641181]
  41. Nat Ecol Evol. 2020 Sep;4(9):1156-1159 [PMID: 32572222]
  42. J Exp Biol. 2017 Sep 1;220(Pt 17):3007-3016 [PMID: 28855318]
  43. Sci Rep. 2015 Jun 03;5:10402 [PMID: 26037147]
  44. J Neurophysiol. 2006 Feb;95(2):1263-73 [PMID: 16236777]
  45. J Anim Ecol. 2020 Jan;89(1):186-206 [PMID: 31424571]
  46. J Exp Biol. 2005 Jul;208(Pt 13):2581-93 [PMID: 15961744]
  47. NPJ Digit Med. 2019 Jul 22;2:72 [PMID: 31341957]
  48. Sleep. 2020 Jun 15;43(6): [PMID: 31863116]
  49. Nat Biomed Eng. 2021 Jul;5(7):737-748 [PMID: 33589782]
  50. J Neurosci Methods. 2017 Mar 1;279:87-100 [PMID: 27914975]
  51. J Biol Chem. 2003 Dec 19;278(51):51053-8 [PMID: 14525994]
  52. Biosensors (Basel). 2020 May 28;10(6): [PMID: 32481598]
  53. Physiol Rev. 2019 Jan 1;99(1):427-511 [PMID: 30427277]
  54. Conserv Physiol. 2020 Dec 30;8(1):coaa126 [PMID: 33408868]
  55. Philos Trans R Soc Lond B Biol Sci. 2021 Aug 2;376(1830):20200211 [PMID: 34121464]
  56. Science. 2015 Jun 12;348(6240):aaa2478 [PMID: 26068858]
  57. Crit Care Med. 1985 Oct;13(10):818-29 [PMID: 3928249]
  58. Philos Trans R Soc Lond B Biol Sci. 2021 Aug 2;376(1830):20200222 [PMID: 34121465]
  59. Zoonoses Public Health. 2013 Feb;60(1):104-16 [PMID: 23302292]
  60. Ann Intern Med. 2015 Nov 17;163(10):768-77 [PMID: 26571241]
  61. Comp Biochem Physiol B Biochem Mol Biol. 2008 Sep;151(1):1-9 [PMID: 18571448]
  62. Sci Total Environ. 2021 Feb 1;754:142372 [PMID: 33254850]
  63. J R Soc Interface. 2019 Oct 31;16(159):20190217 [PMID: 31594525]
  64. J Exp Biol. 2018 Mar 7;221(Pt Suppl 1): [PMID: 29514885]
  65. BMC Med Res Methodol. 2010 Oct 21;10:98 [PMID: 20964858]
  66. Comp Biochem Physiol A Mol Integr Physiol. 2021 Feb;252:110841 [PMID: 33186706]
  67. Nature. 2002 Mar 28;416(6879):389-95 [PMID: 11919621]
  68. Curr Biol. 2021 Jan 25;31(2):257-270.e5 [PMID: 33157026]
  69. Australas Phys Eng Sci Med. 2019 Nov 1;: [PMID: 31677058]
  70. Conserv Physiol. 2019 Jan 14;7(1):coy067 [PMID: 30680216]
  71. Integr Comp Biol. 2016 Oct;56(4):493-9 [PMID: 27471225]
  72. Curr Biol. 2016 Sep 26;26(18):R830-R831 [PMID: 27676295]
  73. Sci Rep. 2019 Sep 23;9(1):13720 [PMID: 31548553]
  74. PLoS One. 2010 Nov 11;5(11):e13956 [PMID: 21085655]
  75. Sci Rep. 2019 Jun 24;9(1):9090 [PMID: 31235773]
  76. J Exp Biol. 2002 Nov;205(Pt 21):3347-56 [PMID: 12324544]
  77. Philos Trans R Soc Lond B Biol Sci. 2021 Aug 2;376(1830):20200218 [PMID: 34121461]
  78. Nature. 2020 Nov;587(7835):605-609 [PMID: 33177710]
  79. Philos Trans R Soc Lond B Biol Sci. 2021 Aug 16;376(1831):20210028 [PMID: 34176329]
  80. J Appl Anim Welf Sci. 2014;17(1):18-28 [PMID: 24484308]
  81. Philos Trans R Soc Lond B Biol Sci. 2016 Sep 26;371(1704): [PMID: 27528776]
  82. Proc Natl Acad Sci U S A. 2019 Oct 22;116(43):21427-21437 [PMID: 31601737]
  83. Ageing Res Rev. 2010 Jan;9(1):12-9 [PMID: 19643206]
  84. Trends Microbiol. 2015 Mar;23(3):172-80 [PMID: 25572882]
  85. Biol Lett. 2005 Dec 22;1(4):469-71 [PMID: 17148235]
  86. Anaesth Intensive Care. 2013 Nov;41(6):710-8 [PMID: 24180711]
  87. Trends Ecol Evol. 2004 Jun;19(6):334-43 [PMID: 16701280]
  88. J Appl Physiol (1985). 2020 Oct 1;129(4):656-663 [PMID: 32853113]
  89. Philos Trans R Soc Lond B Biol Sci. 2009 Jul 27;364(1526):1977-84 [PMID: 19528050]
  90. Sci Rep. 2018 Apr 3;8(1):5525 [PMID: 29615761]
  91. Int J Biosens Bioelectron. 2018;4(4):195-202 [PMID: 30906922]
  92. Ecology. 2015 Jul;96(7):1741-53 [PMID: 26378296]
  93. J Exp Biol. 2013 Feb 15;216(Pt 4):537-42 [PMID: 23125345]
  94. Philos Trans R Soc Lond B Biol Sci. 2021 Aug 16;376(1831):20200225 [PMID: 34176321]
  95. Philos Trans R Soc Lond B Biol Sci. 2021 Aug 16;376(1831):20200230 [PMID: 34176330]
  96. NPJ Digit Med. 2020 Feb 10;3:18 [PMID: 32047863]
  97. Philos Trans R Soc Lond B Biol Sci. 2012 Jun 19;367(1596):1665-79 [PMID: 22566674]
  98. Ecol Evol. 2020 Mar 24;10(10):4291-4302 [PMID: 32489597]
  99. Philos Trans R Soc Lond B Biol Sci. 2021 Aug 16;376(1831):20200229 [PMID: 34176328]
  100. J Neuroimmune Pharmacol. 2020 Sep;15(3):359-386 [PMID: 32696264]
  101. PLoS One. 2012;7(5):e36728 [PMID: 22615801]
  102. PLoS Biol. 2019 Jun 18;17(6):e3000306 [PMID: 31211787]
  103. J Exp Biol. 2021 Jan 11;224(Pt 1): [PMID: 33257430]
  104. Physiol Biochem Zool. 2009 Sep-Oct;82(5):580-9 [PMID: 19656073]
  105. Transl Anim Sci. 2018 Jan 25;2(1):81-88 [PMID: 32704691]
  106. R Soc Open Sci. 2017 Dec 20;4(12):171359 [PMID: 29308259]

MeSH Term

Animals
Animals, Wild
Heart Rate
Physiology
Vertebrates

Word Cloud

Created with Highcharts 10.0.0animalshumanresearchphysiologicalmonitoringfree-livingdeviceshealthThusenvironmentswildpossibleincludingloggersfielddevelopmentwilldriveadvancesadvancementsphysiologyfarecophysiologypredominantlyconductedwithincontrolledlaboratory-basedowingmismatchrecordingtechnologiesavailablesuitebehavioursneedwithstandwithoutundulyaffectingsubjectsrecordvariablesusinganimal-attachedlogginginertial-measurementheart-ratetemperaturestillinfancyopinionpiecereviewimportantfuturedirectionsadvancing'physiologging'technologicalanticipaterequiredfiscalethicalchallengesmustovercomeNon-invasivemulti-sensorminiatureubiquitousworldfitnesscreatinginvaluableopportunitiesanimalphysiologgingsynergisticarguecapitalizingeffortsmadewearablesdesignnon-invasiveneededecophysiologistscollectaccuratedatafree-rangingethicallyabsoluteminimumimpactturnfindingscapacityfostertransformativeinvitebiomedicalengineersresearcherscollaborateanimal-taggingcommunityforwardnecessaryrealizefullpotentialfieldsarticlepartthemeissue'MeasuringPartII'Futuretrendsmeasuringartificialintelligencemanagementphotoplethysmographysensingtechnologywearable

Similar Articles

Cited By