The CD200-CD200R Axis Promotes Squamous Cell Carcinoma Metastasis via Regulation of Cathepsin K.

Iasha Z Khan, Christina A Del Guzzo, Anqi Shao, Jiyoon Cho, Rong Du, Adrienne O Cohen, David M Owens
Author Information
  1. Iasha Z Khan: Department of Dermatology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, New York, New York.
  2. Christina A Del Guzzo: Department of Dermatology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, New York, New York.
  3. Anqi Shao: Department of Dermatology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, New York, New York.
  4. Jiyoon Cho: Department of Dermatology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, New York, New York.
  5. Rong Du: Department of Dermatology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, New York, New York.
  6. Adrienne O Cohen: Department of Dermatology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, New York, New York.
  7. David M Owens: Department of Dermatology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, New York, New York. do2112@columbia.edu. ORCID

Abstract

The CD200-CD200R immunoregulatory signaling axis plays an etiologic role in the survival and spread of numerous cancers, primarily through suppression of antitumor immune surveillance. Our previous work outlined a prometastatic role for the CD200-CD200R axis in cutaneous squamous cell carcinoma (cSCC) that is independent of direct T-cell suppression but modulates the function of infiltrating myeloid cells. To identify effectors of the CD200-CD200R axis important for cSCC metastasis, we conducted RNA sequencing profiling of infiltrating CD11BCd200R cells isolated from CD200 versus CD200-null cSCCs and identified the cysteine protease cathepsin K (Ctsk) to be highly upregulated in CD200 cSCCs. CD11BCd200R cells expressed phenotypic markers associated with myeloid-derived suppressor cell-like cells and tumor-associated macrophages and were the primary source of Ctsk expression in cSCC. A Cd200R myeloid cell-cSCC coculture system showed that induction of Ctsk was dependent on engagement of the CD200-CD200R axis, indicating that Ctsk is a target gene of this pathway in the cSCC tumor microenvironment. Inhibition of Ctsk, but not matrix metalloproteinases, significantly blocked cSCC cell migration . Finally, targeted CD200 disruption in tumor cells and Ctsk pharmacologic inhibition significantly reduced cSCC metastasis . Collectively, these findings support the conclusion that CD200 stimulates cSCC invasion and metastasis via induction of Ctsk in CD200R infiltrating myeloid cells. SIGNIFICANCE: These findings highlight the relationship between CD200-CD200R and cathepsin K in cutaneous squamous cell carcinoma metastasis and suggest that either of these components may serve as a viable therapeutic target in this disease.

References

  1. Biol Chem. 2013 Sep;394(9):1163-79 [PMID: 23629523]
  2. J Cell Sci. 2008 Mar 1;121(Pt 5):609-17 [PMID: 18252795]
  3. J Immunol. 2008 Oct 15;181(8):5791-802 [PMID: 18832739]
  4. Genome Biol. 2010;11(10):R106 [PMID: 20979621]
  5. Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14436-41 [PMID: 17726108]
  6. J Immunol. 2009 Aug 1;183(3):1990-6 [PMID: 19587022]
  7. Virchows Arch. 2019 Jan;474(1):105-109 [PMID: 30132130]
  8. Leukemia. 2011 May;25(5):792-9 [PMID: 21274000]
  9. Immunology. 2001 Feb;102(2):173-9 [PMID: 11260322]
  10. Oncoimmunology. 2018 Feb 8;7(5):e1426517 [PMID: 29721394]
  11. Am J Pathol. 2002 Nov;161(5):1669-77 [PMID: 12414514]
  12. J Immunol. 2003 Sep 15;171(6):3034-46 [PMID: 12960329]
  13. Oncogene. 2012 Jun 14;31(24):2979-88 [PMID: 22020332]
  14. J Biol Chem. 1997 Mar 28;272(13):8109-12 [PMID: 9079619]
  15. Biochem Biophys Res Commun. 2007 Dec 28;364(4):778-82 [PMID: 17964286]
  16. J Invest Dermatol. 2004 Nov;123(5):880-7 [PMID: 15482475]
  17. Proc Natl Acad Sci U S A. 2006 Jan 24;103(4):1041-6 [PMID: 16418292]
  18. Blood. 2006 Dec 15;108(13):4194-7 [PMID: 16946299]
  19. J Bone Miner Res. 2017 Jul;32(7):1432-1441 [PMID: 28322464]
  20. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  21. Head Neck. 2015 Mar;37(3):327-35 [PMID: 24700450]
  22. Science. 2000 Dec 1;290(5497):1768-71 [PMID: 11099416]
  23. Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1434-9 [PMID: 23292936]
  24. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W193-200 [PMID: 17478515]
  25. J Invest Dermatol. 2005 Dec;125(6):1130-8 [PMID: 16354182]
  26. Int J Mol Sci. 2019 Aug 07;20(16): [PMID: 31394726]
  27. Mol Pharmacol. 2008 Jan;73(1):147-56 [PMID: 17940194]
  28. Science. 2002 Mar 29;295(5564):2387-92 [PMID: 11923519]
  29. Anticancer Res. 2018 May;38(5):2749-2754 [PMID: 29715095]
  30. Cancer Immunol Immunother. 2008 Jul;57(7):987-96 [PMID: 18060403]
  31. Breast Cancer Res Treat. 2010 Sep;123(2):405-15 [PMID: 19953316]
  32. J Clin Invest. 2007 Dec;117(12):3922-9 [PMID: 18008004]
  33. Mol Biotechnol. 2002 Sep;22(1):51-86 [PMID: 12353914]
  34. Oncotarget. 2017 Jan 31;8(5):8633-8647 [PMID: 28052009]
  35. J Immunol. 2006 Jan 1;176(1):191-9 [PMID: 16365410]
  36. Am J Pathol. 2008 Jul;173(1):161-9 [PMID: 18511517]
  37. Biochem Soc Trans. 2007 Aug;35(Pt 4):701-3 [PMID: 17635127]
  38. Bone. 2013 Jul;55(1):248-55 [PMID: 23486186]
  39. Cell. 1975 Nov;6(3):331-43 [PMID: 1052771]
  40. J Bone Miner Res. 1997 Sep;12(9):1396-406 [PMID: 9286755]
  41. Cancer Res. 2010 Apr 1;70(7):2962-72 [PMID: 20332223]
  42. J Cell Sci. 2003 Sep 15;116(Pt 18):3783-91 [PMID: 12902406]
  43. Front Oncol. 2019 Dec 06;9:1370 [PMID: 31921634]
  44. Leuk Res. 2013 Jul;37(7):816-21 [PMID: 23643150]
  45. J Dermatol Sci. 2011 Sep;63(3):164-72 [PMID: 21726982]
  46. Clin Exp Immunol. 2001 Nov;126(2):220-9 [PMID: 11703364]
  47. Curr Opin Support Palliat Care. 2008 Sep;2(3):218-22 [PMID: 18685424]
  48. Leuk Res. 2018 Jun;69:72-80 [PMID: 29698858]
  49. Leukemia. 2007 Mar;21(3):566-8 [PMID: 17252007]
  50. Invest Ophthalmol Vis Sci. 2001 Jan;42(1):170-6 [PMID: 11133863]
  51. J Oncol. 2019 Jan 21;2019:5689464 [PMID: 30800162]
  52. J Immunother Cancer. 2014 Dec 16;2(1):46 [PMID: 25598973]
  53. Eur J Haematol. 2007 Nov;79(5):410-6 [PMID: 17803680]
  54. Nat Commun. 2016 Jul 06;7:12150 [PMID: 27381735]
  55. Cytometry B Clin Cytom. 2016 Nov;90(6):493-498 [PMID: 26584149]
  56. J Neurochem. 1984 Oct;43(4):1061-7 [PMID: 6147390]
  57. Immunology. 1984 Aug;52(4):631-40 [PMID: 6146566]
  58. Development. 2000 Nov;127(22):4775-85 [PMID: 11044393]
  59. J Immunol. 2007 May 1;178(9):5595-605 [PMID: 17442942]
  60. Invest New Drugs. 2013 Feb;31(1):20-9 [PMID: 22549440]
  61. Trends Immunol. 2002 Jun;23(6):285-90 [PMID: 12072366]
  62. Eur J Pharmacol. 2009 Jun 24;613(1-3):155-62 [PMID: 19358841]
  63. J Immunol. 2016 Aug 15;197(4):1089-99 [PMID: 27412416]
  64. Science. 1996 Aug 30;273(5279):1236-8 [PMID: 8703060]
  65. Clin Immunol. 2002 Sep;104(3):256-64 [PMID: 12217336]

Grants

  1. P30 AR069632/NIAMS NIH HHS
  2. P30 CA013696/NCI NIH HHS

MeSH Term

Animals
Antigens, CD
Carcinoma, Squamous Cell
Cathepsin K
Disease Models, Animal
Fluorescent Antibody Technique
Gene Expression Regulation, Neoplastic
Genotype
Humans
Immunophenotyping
Membrane Glycoproteins
Mice
Mice, Knockout
Mutation
Myeloid-Derived Suppressor Cells
Tumor Microenvironment

Chemicals

Antigens, CD
CD200 receptor, mouse
Membrane Glycoproteins
Cathepsin K
Ctsk protein, mouse
antigens, CD200

Word Cloud

Created with Highcharts 10.0.0cSCCCtskCD200-CD200RcellsaxismetastasisCD200cellinfiltratingmyeloidKrolesuppressioncutaneoussquamouscarcinomaCD11BCd200RcSCCscathepsininductiontargettumorsignificantlyfindingsviaimmunoregulatorysignalingplaysetiologicsurvivalspreadnumerouscancersprimarilyantitumorimmunesurveillancepreviousworkoutlinedprometastaticindependentdirectT-cellmodulatesfunctionidentifyeffectorsimportantconductedRNAsequencingprofilingisolatedversusCD200-nullidentifiedcysteineproteasehighlyupregulatedexpressedphenotypicmarkersassociatedmyeloid-derivedsuppressorcell-liketumor-associatedmacrophagesprimarysourceexpressionCd200Rcell-cSCCcoculturesystemshoweddependentengagementindicatinggenepathwaymicroenvironmentInhibitionmatrixmetalloproteinasesblockedmigrationFinallytargeteddisruptionpharmacologicinhibitionreducedCollectivelysupportconclusionstimulatesinvasionCD200RSIGNIFICANCE:highlightrelationshipsuggesteithercomponentsmayserveviabletherapeuticdiseaseAxisPromotesSquamousCellCarcinomaMetastasisRegulationCathepsin

Similar Articles

Cited By